• Title/Summary/Keyword: Hardness depth

Search Result 451, Processing Time 0.029 seconds

Study on Optimization of Flame Peeling System for Chestnut(I) - Development of Simulation Model for Flame Peeling Characteristics - (밤의 화염박피 시스템 최적화에 관한 연구(I) - 국내산 밤의 화염박피 특성 예측모델 개발 -)

  • 김종훈;박재복;최창현;권기현
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • The chestnut is a well-blown and important forest product in Korea. The annual production of chestnut is about 95,000 tons and its cultivating area is 80,000 ha. However, the peeling process of outer and inner skins of chestnut is very difficult due to hardness and adhesiveness of chestnut skin. The purpose of this study was to develop a prediction model for flame peeling characteristics of domestic chestnuts, and to evaluate an optimization model to determine the operation conditions of the chestnut flame peeling system. The results of this study were summarized as follows. It was found that the flame peeling characteristics of domestic chestnuts were by the flame temperature, and the flame time. The peeling ratio and the heating depth were increased as the flame temperature and the flame time were increased. The peeling ratio and the heating depth were increased linearly when those were less than 85 % and 2 mm respectively. As the hardness of chestnut shell was decreased, the peeling ratio was increased. A simulation model was developed to predict the peeling ratio and the heating depth based on the hardness of the chestnut shell, the flame temperature, and the flame time of the peeling system. The model was evaluated by comparing the measurement and the prediction of the peeling ratios and heating depths, and showed the good relationship.

Microstructure and Hardness of Surface Melting Hardened Zone of Mold Steel, SM45C using Yb:YAG Disk Laser

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yoon, Tae-Jin;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • This study applied laser surface melting process using CW(Continuous wave) Yb:YAG laser and cold-work die steel SM45C and investigated microstructure and hardness. Laser beam speed, power and beam interval are fixed at 70 mm/sec, 2.8 kW and $800{\mu}m$ respectively. Depth of Hardening layer(Melting zone) was a minimum of 0.8 mm and a maximum of 1.0 mm that exceeds the limit of minimum depth 0.5 mm applying trimming die. In all weld zone, macrostructure was dendrite structure. At the dendrite boundary, Mn, Al, S and O was segregated and MnS and Al oxide existed. However, this inclusion didn't observe in the heat-affected zone (HAZ). As a result of interpreting phase transformation of binary diagram, MnS crystallizes from liquid. Also, it estimated that Al oxide forms by reacting with oxygen in the atmosphere. The hardness of the melting zone was from 650 Hv to 660 Hv regardless of the location that higher 60 Hv than the hardness of the HAZ that had maximum 600 Hv. In comparison with the size of microstructure using electron backscatter diffraction(EBSD), the size of microstructure in the melting zone was smaller than HAZ. Because it estimated that cooling rate of laser surface melting process is faster than water quenching.

Soil Physico-chemical Properties by Land Use of Anthropogenic Soils Dredged from River Basins

  • Park, Jun-Hong;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.341-346
    • /
    • 2016
  • This study was conducted to analyze soil physico-chemical properties of agricultural land composed from the river-bed sediments. We investigated the changes of soil physico-chemical properties at 30 different sampling sites containing paddy, upland and plastic film house from 2012 to 2015. pH, exchangeable calcium and magnesium decreased gradually in paddy soils during the four years, whereas the available $P_2O_5$, exchangeable Ca, Mg and EC increased in upland and plastic film house soil. For the soil physical properties, bulk density and hardness of topsoil were $1.47g\;cm^{-3}$ and 21.5 mm and those of subsoil were $1.71g\;cm^{-3}$ and 25.7 mm in paddy soils. In upland soils, bulk density and hardness of topsoil were $1.48g\;cm^{-3}$ and 15.9 mm and those of subsoil were $1.55g\;cm^{-3}$ and 16.9 mm. In plastic film house soils, bulk density and hardness of topsoil were $1.42g\;cm^{-3}$ and 14.4 mm and those of subsoil were $1.40g\;cm^{-3}$ and 18.5 mm, respectively. The penetration hardness was higher than 3 MPa below soil depth 20 cm, and it is impossible to measure below soil depth 50 cm. As these results, in agricultural anthropogenic soils dredged from river basins, the pH, amount of organic matter and exchangeable cations decreased and soil physical properties also deteriorated with time. Therefore, it is needed to apply more organic matters and suitable amount of fertilizer and improve the soil physical properties by cultivating green manure crops, deep tillage, and reversal of deep soils.

Characterization of DLC Coated Surface of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel (DLC 코팅한 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 표면특성평가)

  • Jang, Jaecheol;Kim, Song-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The various surface treated conditions of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X steel such as as-received, ion nitriding, DLC coated, DLC coated after nitriding for 3 hrs and 6 hrs were investigated to evaluate the beneficial effect for plastic mold steel. Micro Vickers hardness tester was used to estimate nitriding depth from the hardness profile and to measure hardness on the surface. Elastic modulus and residual stress were measured by a nanoindentator. Scratch test and SP (small ball punch test) were utilized to assess the adhesive strength of DLC coating. The depth of nitriding layer was measured as $50{\mu}m$ for the condition of 3 hrs nitriding and $90{\mu}m$ for that of 6 hrs nitriding. Hardness, elastic modulus, residual stress of DLC coating were 20.37 GPa, 162.78 GPa and -1456 MPa respectively. Residual stress on the surface of DLC coating after nitriding could increase to -3914 MPa by introducing nitriding before DLC coating. During the 'Ball-On-Disc' test ${\gamma}^{\prime}$ particles pulled out from the surface of nitrized layer tend to enhance abrasive wear mode since the fraction of ${\gamma}^{\prime}$ (Fe4N) in ion-nitrized layer is known to increases with nitriding time. Thus the specific wear rate of the nitriding layer increased. Comparing with nitriding the specific wear rate in work piece disc as well as ball decreased prominently in DLC coating due to the remarkable reduction in friction coefficient.

Effects of Soil Hardness on the Root Distribution of Pinus rigida Mill. Planted in Association with Sodding Works on the Denuded Land (사방시공지(砂防施工地)에 있어서 리기다소나무의 수근(樹根)의 분포(分布)에 미치는 토양견밀도(土壤堅密度)의 영향(影響))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.66-76
    • /
    • 1982
  • Soil harness represents such physical properties as porosity, amount of water, bulk density and soil texture. It is very important to know the mechanical properties of soil as well as the chemical in order to research the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to grip soil hardness by soil layer and also to grasp the root distribution and the correlation between soil hardness and the root distribution of Pinus riguda Mill. planted on the denuded hillside with sooding works by soil layer on soil profile. The site investigated is situated at Peongchang-ri 13, Kocksung county, Chon-nam Province. The area is consisted of 3.63 ha having on elevation of 167.5-207.5 m. Soil texture is sandy loam and parant rock in granite. Average slope of the area is $17^{\circ}-30^{\circ}$. Soil moisture condition is dry. Main exposure of the area is NW or SW. The total number of plots investigated was 24 plots. It divided into two groups by direction each 12 plots in NW and SW and divided into three groups by the position of mountain plots in foot of mountain, in hillside, and in summit of mountain, respectively. Each sampling tree was selected as specimen by purposive sampling and soil profile was made at the downward distance of 50cm form the sampling tree at each plot. Soil hardness, soil layer surveying, root distribution of the tree and vegetation were measured and investigated at the each plot. The soil hardness measured by the Yamanaka Soil Hardness Tester in mm unit. the results are as follows: 1) Soil hardness increases gradually in conformity with the increment of soil depth. The average soil indicator hardness by soil layer are as follows: 14.6mm in I - soil layer (0-10cm in depth from soil surface), 16.2mm in II - soil layer (10-20cm), 17.2 in III - soil layer (20-30cm), 18.3mm in IV - soil layer(30-40cm), 19.8mm in V - soil layer (4.50mm). 2) The tree roots (less than 20mm in diameter) distribute more in the surface layer than in the subsoil layer and decrease gradually according to the increment of soil depth. The ratio of the root distribution can be illustrated by comparing with each of five soil layers from surface to subsoil layer as follows: I - soil layer; 31%, II - soil layer; 26%, III - soil layer; 18%, IV - soil layer; 12%, V - soil layer; 13%, 3) Soil hardness and tree root distribution (less than 20mm in diameter) of Pinus rigida Mill. correlate negatively each other; the more soil hardness increases, the most root distribution decreases. The correlation coefficients between soil hardness and distribution of tree roots by soil layer are as follows: I - soil layer; -0.3675 (at the 10% significance level), II - soil layer; -0.5299 (at the 1% significance level), III - soil layer; -0.5573 (at the 2% significance level), IV - soil layer; -0.6922 (at the 5% significance level), V - soil layer; -0.7325 (at the 2% significance level). 4) the most suitable range of soil hardness for the growth of Pinus rigida Mill is the range of 12-14.9mm in soil indicator hardness. In this range of soil indicator hardness, the root distribution of this tree amounts to 41.8% in spite of 33% in soil harness and under the 20.9mm of soil indicator hardness, the distribution amounts to 93.2% in spite of 82% in soil hardness. Judging from above facts, the roots of Pinus rigida can easily grow within the soil condition of 20.9mm in soil indicator hardness. 5) The soil layers are classified by their depths from the surface soil.

  • PDF

Surface modification and induced ultra high surface hardness by nitrogen ion implantation of low alloy steel

  • Olofinjana, A.O.;Bell, J.M.;Chen, Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.157-158
    • /
    • 2002
  • A surface hardenable low alloy carbon steel was implanted with medium energy (20 - 50KeV) $N_2^+$ ions to produced a modified hardened surface. The implantation conditions were varied and are given in several doses. The surface hardness of treated and untreated steels were measured using depth sensing ultra micro indentation system (UMIS). It is shown that the hardness of nitrogen ion implanted steels varied from 20 to 50GPa depending on the implantation conditions and the doses of implantation. The structure of the modified surfaces was examined by X-ray photoelectron spectroscopy (XPS). It was found that the high hardness on the implanted surfaces was as a result of formation of non-equilibrium nitrides. High-resolution XPS studies indicated that the nitride formers were essentially C and Si from the alloy steel. The result suggests that the ion implantation provided the conditions for a preferential formation of C and Si nitrides. The combination of evidences from nano-indentation and XPS, provided a strong evidence for the existence of $sp^3$ type of bonding in a suspected $(C,Si)_xN_y$ stoichiometry. The formation of ultra hard surface from relatively cheap low alloy steel has significant implication for wear resistance implanted low alloy steels.

  • PDF

Surface Reaction between Phosphate bonded Investment and Ti-Zr-Cr based Alloy for Dental castings (인산염계 주형재와 치과주조용 Ti-Zr-Cr계 합금의 계면반응)

  • Jung, Jong-Hyun;Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.73-78
    • /
    • 2005
  • The surface-reacted layer of titanium castings greatly affects their mechanical properties. This study analyzed the interfacial zone of Ti-20%Zr-5%Cr alloy castings obtained from phosphate bonded investment and examined the relationship between the surface-reacted layer and hardness. The Vickers hardness of cast disks were tested at 20$\mu m$ intervals from the surface to 120$\mu m$ in depth. The cross-section was observed metallurgically, and line profile of the reacted layer was conducted under the EDX. The surface-reacted layer of Ti-20%Zr-5%Cr alloy is showed a similar tendency to Ti-6%Al-4%V alloy in thickness, and also Si diffusion in multiple reacted layer of Ti-20%Zr-5%Cr alloy is less than cp Ti and similar to Ti-6%Al-4%V alloy. The Vickers hardness in the surface layer was greater than in the inner part, and the Vickers hardness of Ti-20%Zr-5%Cr alloy ranged 650 to 390 and cp Ti ranged 810 to 160, Ti-6%Al-4%V alloy ranged 710 to 530 respectively.

  • PDF

Fatigue Strength Improvement of Pressure Vessel Steel by Lasler Beam Radiation (레이저빔 조사에 의한 압력용기용 강의 피로강도 향상방법 개발)

  • 권재도;진영준;김상태;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.519-528
    • /
    • 1994
  • Degradation problem due to long term service in machine or structure is now one of important problems in whole industrial field. In this study, pressure vessel steel, Cr-Mo steel, which was used more than 60,000 hours, was surface-modified by laser beam radiation for the improvement of fatigue strength. To find out optimum radiation condition, hardness, residual stress measurement and fatigue tests were carried out with the specimen of different radiation conditions. Experimental results show that micro-hardness values on the surface of the radiated specimens were approximately 2.2 times higher than those of un-radiated ones. In the depth direction of the specimen, hardness on the surface showed maximum value and was decreased at the inside the specimen. Different hardness values are due to the energy density Q which was absorbed by the specimen. Fatigue tests show that fatigue life was improved by the compressive residual stress after laser beam radiation. However, some specimens with differednt conditions show the shorter fatigue life. It means that laser beam radiation with optimum parameter can improve thae fatigue strength.

Tempering Behavior of 0.45% Carbon Steel Treated by a High Frequency Induction Hardening Technique (고주파표면 경화 처리된 0.45% 탄소강의 템퍼링 거동)

  • Shim, J.J.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.10-19
    • /
    • 1990
  • The tempering behavoirs of 0.45% carbon steel treated by automatic progressive high frequency induction hardening equipment have been investigated. In order to examine the correlation of hardness with both tempering temperature and time, simple regression analysis has been made using the statistical quality control package. The maximum surface hardness value of induction hardened zone and its effective hardening depth have been determined to be Hv 810 and 0.76mm, respectively. The hardness obtained after tempering has been shown to vary lineary with tempering time at six different temperatures. The activation energies during tempering have been calculated to be 25.34kcal/mole, 32.73kcal/mole and 49.24kcal/mole for HRcs 60, 50 and 40, respectively, showing that tempering process occurs by a complex mechanism, The tempering hardness equation of $H=90.113{\sim}4.531{\times}10^{-3}$ [T(11.996+log t)] has proved to be in a reasonably good agreement with experimently determined data and it is also expected to be useful for the determination of tempering treatment conditions to obtain a required hardness value.

  • PDF

New Glaze Composition for Chemical Strengthening of Bone China

  • Kim, Hyeong-Jun;Han, Yoon Soo;Park, Hyung-Bin;Park, Jewon;Na, Hyein;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.299-306
    • /
    • 2018
  • In order to improve the hardness of commercial bone china, we suggested a chemical strengthening process and new glaze for its process. New glaze contained about two times more $Na_2O$ and $Al_2O_3$ and had a higher transition temperature than that of commercial frit. Chemical strengthening enhanced the hardness of the new glaze-coated bone china by over 30% compared to that of commercial product. The change of glaze composition influenced potassium ion diffusion distance and depth of strengthened layer during chemical treatment. After chemical strengthening of new glaze-coated bone china, the residual compressive stress inside the glaze was measured and found to be greater than 160 MPa.