DOI QR코드

DOI QR Code

New Glaze Composition for Chemical Strengthening of Bone China

  • Kim, Hyeong-Jun (Korea Institute of Ceramics Engineering & Technology) ;
  • Han, Yoon Soo (Korea Institute of Ceramics Engineering & Technology) ;
  • Park, Hyung-Bin (Korea Institute of Ceramics Engineering & Technology) ;
  • Park, Jewon (Korea Institute of Ceramics Engineering & Technology) ;
  • Na, Hyein (Korea Institute of Ceramics Engineering & Technology) ;
  • Choi, Sung-Churl (Department of Materials Science and Engineering, Hanyang University)
  • Received : 2018.03.15
  • Accepted : 2018.04.25
  • Published : 2018.05.31

Abstract

In order to improve the hardness of commercial bone china, we suggested a chemical strengthening process and new glaze for its process. New glaze contained about two times more $Na_2O$ and $Al_2O_3$ and had a higher transition temperature than that of commercial frit. Chemical strengthening enhanced the hardness of the new glaze-coated bone china by over 30% compared to that of commercial product. The change of glaze composition influenced potassium ion diffusion distance and depth of strengthened layer during chemical treatment. After chemical strengthening of new glaze-coated bone china, the residual compressive stress inside the glaze was measured and found to be greater than 160 MPa.

Keywords

References

  1. W. R. H. Ramsay, K. Sutton, and E. G. Ramsay, "Bow Porcelain: Glaze Compositions Associated with the Phosphatic Ware - 1742-1774," Proc. R. Soc. Victoria, 123 [2] 161-71 (2004).
  2. S. A. F. Batista, P. F. Messer, and R. J. Hand, "Fracture Toughness of Bone China and Hard Porcelain," Br. Ceram. Trans., 100 [6] 256-59 (2001). https://doi.org/10.1179/bct.2001.100.6.256
  3. S. R. Braganca, C. P. Bergmannm, and H. Hubner, "Effect of Quartz Particle Size on the Strength of Triaxial Porcelain," J. Eur. Ceram. Soc., 26 [16] 3761-68 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.01.012
  4. G. Stathis, A. Ekonomakou, C. J. Stournaras, and C. Ftikos, "Effect of Firing Conditions, Filler Grain Size and Quartz Content on Bending Strength and Physical Properties of Sanitary Ware Porcelain," J. Eur. Ceram. Soc., 24 [8] 2357-66 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.07.003
  5. A. D. N. Junior, D. Hotza, V. C. Soler, and E. S. Vilches, "Analysis of The Development of Microscopic Residual Stresses Particles in Porcelain Tile," J. Eur. Ceram. Soc., 28 [14] 2629-37 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.04.009
  6. X. Cheng, S. Ke, Q. Wang, H. Wang, A. Shui, and P. Liu, "Characterization of Transparent Glaze for Single-Crystalline Anorthite Porcelain," Ceram. Int., 38 [6] 4901-8 (2012). https://doi.org/10.1016/j.ceramint.2012.02.081
  7. D. U. Tulyaganov, S. Agathopoulos, H. R. Fernandes, and J. M. F. Ferreira, "The Influence of Incorporation of ZnO-containing Glazes on the Properties of Hard Porcelains," J. Eur. Ceram. Soc., 27 [2] 1665-70 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.011
  8. C. B. Ustundag, Y. K. Tur, and A. Capoglu, "Mechanical Behavior of A Low-Clay Translucent White Ware," J. Eur. Ceram. Soc., 26 [1-2] 169-77 (2006). https://doi.org/10.1016/j.jeurceramsoc.2004.10.019
  9. E. D. Spinosa and K. J. Davies, "Lead-Free Glaze or Enamel for Use on Ceramic Bodies"; US Patent 5,447,891 A (September 29, 1993).
  10. Y. Tokunaga, "Lead-free Frit Glaze"; US Patent 5,362,687 A (February 4, 1992).
  11. R. O. Knapp, "Low-Temperature Lead-Free Glaze for Alumina Ceramics"; US Patent 5,677,250 (October 17, 1994).
  12. A. Kara and R. Stevens, "Interactions between an ABS Type Leadless Glaze And a Biscuit Fired Bone China Body During Glost Firing. Part II: Investigation of Interactions," J. Eur. Ceram. Soc., 22 [7] 1103-12 (2002). https://doi.org/10.1016/S0955-2219(01)00420-4
  13. V. Rosa, H. N. Yoshimura, M. M. Pinto, C. Fredericci, and P. F. Cesar, "Effect of Ion Exchange on Strength and Slow Crack Growth of a Dental Porcelain," Dent. Mater., 25 [6] 736-43 (2009). https://doi.org/10.1016/j.dental.2008.12.009
  14. K. J. Anusavice, C. Shen, and R. B. Lee, "Strengthening of Feldspathic Porcelain by Ion Exchange and Tempering," J. Dent. Res., 71 [5] 1134-38 (1992). https://doi.org/10.1177/00220345920710050101
  15. D. H. Kim, J. H. Maeng, Y. S. Han, H. T. Kim, S. C. Choi, and H. J. Kim, "The Mechanical Properties of Porcelain with Thermally and Chemically Induced Residual Stress on Glaze," J. Korean Ceram. Soc., 51 [5] 487-91 (2014). https://doi.org/10.4191/kcers.2014.51.5.487
  16. H. J. Kim, D. H. Kim, D. M. Kim, J. H. Choi, Y. S. Han, S. M. Lee, and H. T. Kim, "The Generation of the Residual Stress in ABS Type Glaze of Commercial Bone China," J. Eur. Ceram. Soc., 36 [3] 899-903 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.10.022
  17. H. J. Kim, Y. S. Han, D. H. Kim, D. M. Kim, J. H. Choi, S. M. Lee, Y. Kim, and H. T. Kim, "Improvement of Glaze Hardness in Commercial Bone China," J. Korean Ceram. Soc., 52 [6] 508-13 (2015). https://doi.org/10.4191/kcers.2015.52.6.508
  18. Y. Nagashima, "Strengthening of Glass and its Structure; from Viewpoints of Fracture and Chemical Strengthening Performance (in Japanese)," New Glass, 30 [114] 3-10 (2015).
  19. S. Inaba and S. Fujino, "Mechanical Properties of Glass (in Japanese)," New Glass, 23 [4] 46-52 (2008).
  20. Y. Nagashima, "Chemically Strengthened Glass - from View Point Glass for Mobile Display (in Japanese)," New Glass, 26 [1] 5-10 (2011).
  21. M. B. Volf, Chemical Approch to Glass; pp. 300-1, Elsevier, Amsterdam, 1984.
  22. H. Scholze, Glass; pp. 272-73, Springer-Verlag, New York, 1991.
  23. J. H. Maeng, Chemical Strengthening of Soda-Lime Sheet Glass (in Korean)", pp. 40-6, in Ph.D. Thesis, Hanyang University, Seoul, 2014.
  24. M. E. Nordberg, E. L. Mochel, H. M. Garfinkel, and J. S. Olcott, "Strengthening by Ion Exchange," J. Am. Ceram. Soc. 47 [5] 215-19 (1964). https://doi.org/10.1111/j.1151-2916.1964.tb14399.x
  25. R. Gy, "Ion Exchange for Glass Strengthening," Mater. Sci. Eng., B, 149 [2] 159-65 (2008). https://doi.org/10.1016/j.mseb.2007.11.029
  26. W. D. Kingery, "Factors Affecting Thermal Stress Resistance of Ceramic Materials," J. Am. Ceram. Soc., 38 [1] 3-15 (1955). https://doi.org/10.1111/j.1151-2916.1955.tb14545.x
  27. M. Tribaudino, R. J. Angel, F. Camara, F. Nestola, D. Pasqual, and I. Margiolaki, "Thermal Expansion of Pla gioclase Feldspars," Contrib. Mineral. Petrol., 160 [6] 899-908 (2010). https://doi.org/10.1007/s00410-010-0513-3
  28. S. Ghosh, K. S. Pal, N. Dandapat, J. Ghosh, and S. Datta, "Glass-Ceramic Glaze for Future Generation Floor Tiles," J. Eur. Ceram. Soc., 33 [5] 935-42 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.11.008
  29. M. Ahmed and D. A. Earl, "Characterizing Glaze-Melting Behavior via HSM," Am. Ceram. Soc. Bull., 81 [3] 47-51 (2002).
  30. J. Partyka, K. Gasek, K. Pasiut, and M. Gajek, "Effect of Addition of BaO on Sintering of Glass-Ceramic Materials from $SiO_{2.}-Al_2O_3-Na_2O-K_2O$-CaO/MgO System," J. Therm. Anal. Calorim., 125 [3] 1095-103 (2016). https://doi.org/10.1007/s10973-016-5462-2