• Title/Summary/Keyword: Hardness depth

Search Result 451, Processing Time 0.028 seconds

Characterization and Transformation of 0.52%C steels for Wheel Bearing Units Produced by High Frequency Induction Hardening after Hot Forging (열간단조 후 고주파 유도경화에 의해 제조된 휠 베어링 유니트용 0.52%C강의 특성과 변태거동)

  • Choi, Byung-Young
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1103-1108
    • /
    • 2010
  • We fabricated flanged outer races for wheel bearing units using 0.52%C clean steels, and then characterized and studied the transformation behavior. The outer races produced by hot forging and high frequency induction hardening in this study were analyzed through microstructural characterization using OM, SEM, TEM, and X-ray diffractometer and their microhardness depth profiles of the raceway contacted by balls were measured using MVH tester. The surface hardened layers with a uniform hardness profile in the raceway consisting of very fine martensite with sub-micron sized retained austenite could be formed for very short time during high frequency induction hardening after hot forging. The very fine martensite may be transformed on rapid cooling, from the inhomogeneous austenite nucleated on rapid heating in small particles of pearlitic cementite fragmentated by hot forging. On the other hand the sub-micron sized retained austenite may be chemically stabilized due to their extremely small size, from the small austenite nucleated at the grain boundaries.

Effect of Die Cooling Time on Component Mechanical Properties in a Front Pillar Hot Stamping Process (곡선형 냉각채널 금형을 사용한 프론트 필라 핫스탬핑 공정에서 금형냉각시간이 기계적 특성에 미치는 영향)

  • Lee, Jaejin;Kang, Dakyung;Suh, Changhee;Lim, Yonghee;Lee, Kyunghoon;Han, Soosik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.33-38
    • /
    • 2019
  • Researchers have recently begun to study hot stamping processes to shorten the mold cooling time and improve productivity. These publications explain that the mold cooling time can be reduced by using a curved cooling channel, where the mold surface is processed to a uniform depth, instead of a straight cooling channel that uses the conventional gun drilling machine. This study investigates the characteristics of the front pillar of an automobile after using a mold with a curved cooling channel. To analyze the change in properties, we used a 1.6 mm boron steel blank and heated the prototype at $930^{\circ}C$ for 5 minutes. Next, we formed the prototype with a load of about 500 tons while varying the mold cooling time between 1 and 10 seconds. We subjected each prototype specimen to a tensile strength test, a hardness test, and a tissue surface observation.

The Surface Properties and Wear Resistance of Cr-Mo-V Steel by Salt bath Process after Pseudo-electrolysis (의(擬)전기분해식 염욕질화처리를 통한 Cr-Mo-V강의 내마모와 표면성질에 관한 연구)

  • Jung, Gil Bong;Yoon, Jae Hong;Hur, Sung Kang
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.225-234
    • /
    • 2010
  • Salt bath nitriding, which has been developed recently by domestic company, is an emerging ecofriendly surface treatment. The salt bath nitriding is accompanied by the electrolysis process in the pretreatment step, and this whole processis called Pseudo-Electrolysised Salt bath Nitriding (PESN). The PESN creates only $NH_3$ and non-toxic salts without harmful $CN^{-}$ or toxic gas such as that found in previous salt bath nitriding. In general, ion nitriding and gas nitriding create high hardness and a strong brittle white layer on the surface. However, the PESN shows a thin white and gray layer. The PESN was applied to the defense material, 3%Cr-Mo-V steel, to study the surface characteristics at $480^{\circ}C$, $530^{\circ}C$, and $580^{\circ}C$ for 4 hrs, 20 hrs, 40 hrs, and 60 hrs of nitriding time condition. As a result, the best nitriding layer was found at $530^{\circ}C$ for 40 hrs. If we improve corrosion resistance and nitriding layer depth, the PESN will be able to be applied to the defense industry parts.

Selection of Optimal Processing Conditions for Quartz Using the Taguchi Method (다구찌법을 이용한 석영의 최적 가공조건 선정에 관한 연구)

  • Jeong, Ho-In;Choi, Seong-Jun;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2022
  • Quartz (SiO2) has high abrasion and heat resistances and excellent chemical and mechanical properties; therefore, it is used in various industries, such as machinery, chemistry, optics, and medicine. Quartz is a high-hardness and brittle material and is classified as the topmost difficult-to-cut material, which is because of the cracking or chipping at the edge during processing. Corner wear, such as cracks and chippings that occur during cutting, is a major cause for the deterioration in the machining quality. Therefore, many researchers are investigating various techniques to process quartz effectively. However, owing to the mechanical properties of quartz, most studies have been conducted on grinding, micromachining, and microdrilling. Few studies have been conducted on quartz processing. The purpose of this study was to analyze the machining characteristics according to the machining factors during the slot machining of quartz using a cubic boron nitride (CBN) tool and to select the optimal machining conditions using the Taguchi method. The machining experiment was performed considering three process variables: the spindle speed, feed rate, and depth of cut. The cutting force and surface roughness were analyzed according to the processing conditions.

Study of Characterization of Activated Carbon from Coconut Shells on Various Particle Scales as Filler Agent in Composite Materials

  • DUNGANI, Rudi;MUNAWAR, Sasa Sofyan;KARLIATI, Tati;MALIK, Jamaludin;ADITIAWATI, Pingkan;SULISTYONO, SULISTYONO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.256-271
    • /
    • 2022
  • Activated carbon (AC) derived from coconut shells (CS-AC) was obtained through pyrolysis at 700℃ and subsequently activated with H3PO4. AC was ground in a Wiley mill several times to form powder particles at particle scales of 80, 100, and 200 meshes. The characterization of the AC was studied using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), and surface area analysis (SBET). The CS-AC-200 mesh resulted in a higher percentage of mesopores and surface area. This particle size had a larger surface area with angular, irregular, and crushed shapes in the SEM view. The smaller particles had smoother surfaces, less wear, and increased curing depth and ratio of the hardness of the resin composite. Based on the characterization results of the AC, it is evident that CS-AC with a 200 mesh particle size has the potential to be used as a filler in biocomposites.

A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module (레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구)

  • Young-Durk Park
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

A STUDY ON THE CHANGES IN DEGREE OF CONVERSION OF DUAL-CURE RESTORATIVE MATERIALS WITH TIME-ELAPSE (이중중합 수복재의 시간경과에 따른 중합도 변화)

  • Yang, Chul-Ho;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.554-563
    • /
    • 1999
  • For the purpose of elucidating the polymerization modes of dual-cure restorative materials and comparing them with single-cure restorative materials, a study was performed on the light-cured composite resin, dual-cure composite resin, dual-cure glass ionomer cement and chemical-cure glass ionomer cement. By measuring the microhardness of each material at 0mm, 1mm and 3mm depth during initial 24 hours with predetermined interval, the state of polymerization and degree of conversion was indirectly evaluated for each material, and obtained results are as follows : 1. All of four materials tested showed significant increase in microhardness after 24hrs compared with just after curing starts. 2. In all materials except Ketac-fil, there showed a significant difference in microhardness between each depth at each time interval. 3. In the test of lap time till final curing for each material, the polymerization process was revealed to last longer in the dual-cure type materials than in single-cure type materials at 3mm depth. Based on the results above, it was demonstrated with materials of dual-cure mode that the degree of conversion increases by successive curing reactions even in the deeper layers where sufficient curing light is impermeable.

  • PDF

Feasibility Study of Parallel- Plate Detector Using Dielectric film for 6 MV X-ray (6MV X-선 검출특성 조사를 위하여 유전체 필름을 이용하여 제작한 평행판 검출기의 유용성)

  • 조문준;김용은;이병용;김정기;임상욱;김현수;김기환
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • The parallel plate detector with dielectric film for dosimetry was designed to measure detection characteristic of 6 MV X-ray with medical linear accelerator. PTFE film was inserted into FEP films that are made by two one-side metal coated materials for ion source. The thicknesses of PTFE dielectric film was 100 ${\mu}{\textrm}{m}$ and the thickness of FEP dielectric film was 100 ${\mu}{\textrm}{m}$, respectively. This detector was fixed by two acrylic plate for physical hardness ad geometrical consistency. The geometrical condition for measurement with parallel-plate for detector was below; SSD=100 cm and the 5 cm depth between detector and phantom surface The major parameter of detector characteristics such as zero drift current, leakage current, charge response by applied voltage, reproducibility, linearity, TMR measurement, dose rate effect were measured. The zero drift currents are 8.3 pA and leakage currents are 10 pA. The charge response of applied voltage is showing linearity in 414 voltage. The measurement deviation of reproducibility in this detector is within 1% for dose and the linearity of applied dose shows in this detector. The TMR curves in phantom between this parallel plate detector and reference detector are matched within 3% deviation from maximum dose depth to 7.5 cm depth. It is considered that this dosimetric system is satisfactory for the purpose of the constancy check of the 6 MV x-ray from medical linear accelerator.

  • PDF

The Effects of Site Environmental Factors on Estimation of Site Index Function for Chamaecyparis obtusa Endlicher Stands (입지환경인자를 바탕으로 한 편백의 지위지수 추정에 관한 연구)

  • Kim, Dae-Hyun;Kim, Eui-Gyeong;Lee, Sung-Gi;Chung, Young-Gyo;Jeong, Jin-Hyun
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.891-898
    • /
    • 2008
  • This study was conducted to develop the effects of site environmental factors on estimation of site index function for Chamaecyparis obtusa Endlicher stands. We derived nonlinear growth equation and the draw site index curves by applying this estimated equation. This study with Chapman-Richards function showed significant P-value which was less then 0.0001 and $R^2$ value 0.5947. This study was conducted to develop the feasible site index equation of Chamaecyparis obtusa Endlicher. For the table, the data of 82 sample areas that were thought to be without errors among the data of Chamaecyparis obtusa Endlicher sample area located on the value-oriented forest location chart were used and estimated. After analyzing the quantification method I based on 13 environmental factors to develop the score table for the site-index estimation of Chamaecyparis obtusa Endlicher, $R^2$ value of the model was 0.7555. It has been analyzed that the scope value of Soil moisture in horizon A was 7.5045, that of total soil depth was 6.3896, that of topography was 5.3471, that of slope was 4.7000 and that of aspect was 3.2038. After analyzing the partial correlation to examine the factors that affected most the site-index of Chamaecyparis obtusa Endlicher, it has been noted that the partial correlation of climatic zone was 0.4987, which was highest, and it was followed by Soil moisture in horizon A (0.4592), slope (0.4537), topography (0.3299) and total soil depth (0.1035). As a result of conducting the significance test for partial correlation, it has been found that topography, climatic zone, parent rock, slope, altitude, aspect, Soil moisture in horizon A, soil hardness in horizon A and total soil depth were recognized significant with 1% of significance level and sedimentary type and soil texture in horizon A were recognized significant with 5% of significance level.

A STUDY ON THE PHYSICAL PROPERTIES OF RESTORATIVE MATERIALS FOR PHOTO-POLYMERIZATION OF ARGON LASER (아르곤 레이저를 이용한 광중합 수복재의 물리적 성질에 관한 연구)

  • Ju, Sang-Ho;Choi, Hyung-Jun;Kim, Seong-Oh;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.368-382
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the results of argon laser for 5 seconds, argon laser for 10 seconds, and visible light for 40 seconds photo-polymerization in compressive strength, microhardness, curing depth, temperature rising during polymerization, and polymerization shrinkage. Hybrid type composite resin(Z-100) and compomer(Dyract) were used to be compared. The compressive strength was measured by an Instron(1mm/min cross head speed) in 60 specimens and the microhardness of the surface was expressed by Vickers Hardness Number(VHN) in 30 specimens. The curing depth was evaluated comparing the different values of upper and lower VHN according to irradiation time and thickness for the light source polymerization in 60 specimens. The temperature rising during photopolymerization was observed by the temperature change with thermocouple sensitizer beneath 40 specimens at the argon laser for 10 seconds and visible light 40 seconds irradiation. The polymerization shinkage was evaluated by calculating the decrease of % volume by using a dilatometer in 30 specimens. The results were as follows ; 1. In the case of compressive strength, the argon laser polymerization groups were higher than visible light group in Z-100 (p<0.05). In Dyract, the argon laser 5 seconds group did not show a significant difference with the visible light 40 seconds group. The argon laser 10 seconds group showed the markedly low value when compared with other groups (p<0.05) 2. In microhardness, Z-100 was better than Dyract when comparing by VHNs (p<0.05); however, there was not a significant difference between two materials in the visible light 40 seconds group and the argon laser 10 seconds group. 3. In the study of curing depth, Z-100 showed the consistent polymerization in argon laser irradiation because there was no difference in the VHN decrease according to the thickness change. Over the thickness control, the results did not show a significant difference between visible light and argon laser group in Z-100; however, in the case of Dyract, the visible light 40 seconds group was better than the argon laser groups(p<0.05). 4. There was a significant difference between the two materials in temperature rising during polymerization (p<0.05), but not a significant difference between irradiation times, 5. There was not a significant difference between the two materials in polymerization shrink age. The argon laser 5 seconds group was smaller than the other groups (p<0.05). It could be concluded that Z-100 polymerization was recommended to use the argon laser for reduction of the irradiation time while Dyract was recommended to use the visible light polymerization.

  • PDF