• Title/Summary/Keyword: Hardness change

Search Result 950, Processing Time 0.032 seconds

The Characteristics of the Chungja Celadon the Amount of BaTio3 (BaTio3 조성비 변화에 따른 청자소지물질의 특성)

  • Yun, Mi-Young;Kim, Yeon-Jung;Ja, Lim-Hun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • In order to improve the mechanical roperties of the Gangjin celadon $BaTiO_3$ was added into the raw materials of celadon matrix. Through SEM and XRD analysis the structural changes were observed and the hardness values were measured. We could confirm that the mechanical strength considerably increased in the $BaTiO_3$ added celadon through the measurement of hardness values. The increase of mechanical strength values in the celadon may result from the compositional change in the microstructure such as grain boundary area through EDAX analysis. We might suggest a fundamental idea to improve the mechanical intensity of the celadon.

Prediction of Jominy Curve using Artificial Neural Network (인공 신경망 모델을 활용한 조미니 곡선 예측)

  • Lee, Woonjae;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • This work demonstrated the application of an artificial neural network model for predicting the Jominy hardness curve by considering 13 alloying elements in low alloy steels. End-quench Jominy tests were carried out according to ASTM A255 standard method for 1197 samples. The hardness values of Jominy sample were measured at different points from the quenched end. The developed artificial neural network model predicted the Jominy curve with high accuracy ($R^2=0.9969$ for training and $R^2=0.9956$ for verification). In addition, the model was used to investigate the average sensitivity of input variables to hardness change.

Effects of Storage Temperatures and Heating Methods on the Textural characteristics of Wheat Flour Gels and Loaf Bread (저장 온도 및 가열 방법이 밀가루겔 및 식빵의 조직 특성에 미치는 영향)

  • 고하영;윤계순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.566-571
    • /
    • 1999
  • Effects of storage temperature at 18oC and 5oC for 9 days and heating conditions on textural char acteristics in strong wheat flour gels were investigated using a Instron after microwave (2450MHz, 700W). Heating condition did not affect the texture property in the wheat flour gels, but the frozen storage was very effective to prevent the hardening of the samples. Hardness, adhesiveness, and gumminess in the wheat flour gels decreased in increasing moisture content from 45% to 55%, but there was little change in cohesiveness. The storage at room temperature for 2 hours resulted in increased hardness in the heated wheat flour gels. PE wrap package of the wheat flour gels prevented weight loss by 3~6% and hardening effectively. Sugar, or sugar and shotening resulted in increased hardness in loaf bread. The hardness and weight loss in loaf breads were markedly changed by the heating time with microwave. The most critical time point was around 4 minutes following the heating.

  • PDF

Effect of the electrolyte composition and the plating condition on the hardness of zinc deposit in the sulfate bath (황산아연욕에서 도금층 경도에 미치는 욕조성 및 도금조건의 영향)

  • 김명수;김영근
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.356-364
    • /
    • 2000
  • Factors that affect the hardness of the zinc electrodeposits in the sulfate electrolyte were investigated. The hardness of zinc deposit was enhanced by increasing the concentration of impurities such as iron and nickel in the bath that changed the crystallographic orientation of the zinc deposit from the strong basal plane to the random orientation. The increase of the concentration of sodium sulfate and current density in iron contained bath improved the hardness of zinc deposit because those were easily codeposited in zinc layer. However the increase of the concentration of sodium sulfate up to 80g/$\ell$ in the bath darkened the surface of zinc electrodeposits due to change of morphology by the codeposition of iron.

  • PDF

Analysis of Influence Factors of Setting Time Estimation System for AI-Based Concrete Finishing Automation System (AI 기반 콘크리트 마감 자동화 시스템용 응결추정계의 영향인자 분석)

  • Han, Soo-Hwan;Hu, Yun-Yao;Kim, Su-Ho;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.177-178
    • /
    • 2022
  • As part of the study on the development of the setting time estimation system, this study attempted to confirm the change in hardness values for each influencing factor variable and secure its reliability. According to the research results of this paper, the hardness value of the setting time estimation system tended to gradually decrease in the case of the hardness value of the closing time by curing temperature, and the hardness value increased in the concrete state compared to mortar. Therefore, further research on influencing factors will be conducted in consideration of material and statistical factors in the future.

  • PDF

The Measurement Errors of Elastic Modulus and Hardness due to the Different Indentation Speed (압입속도의 변화에 따른 탄성계수와 경도의 오차 연구)

  • Lee, Kyu-Young;Lee, Chan-Bin;Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.360-364
    • /
    • 2010
  • Most research groups used two analysis methods (spectroscopy and nanotribology) to measure the mechanical properties of nano-materials: NMR (Nuclear Magnetic Resonance), IR (Infrared Spectroscopy), Raman Spectroscopy as the spectroscopy method and AFM (Atomic Force MicroScope), EFM (Electrostatic Force Microscope), KFM (Kelvin Force Microscope), Nanoindenter as the nanotribological one. Among these, the nano-indentation technique particularly has been recognized as a powerful method to measure the elastic modulus and the hardness. However, this technique are prone to considerable measurement errors with pressure conditions during measurement. In this paper, we measured the change of elastic modulus and hardness of an Al single crystal with the change of load, hold, and unload time, respectively. We found that elastic modulus and hardness significantly depend on load, hold, and unload time, etc. As the indent time was shortened, the elastic modulus value decreased while the hardness value increased. In addition, we found that elastic modulus value was more sensitive to indent load, hold, and unload time than the hardness value. We speculate that measurement errors of the elastic modulus and the hardness originate from the residual stress during indenting test. From our results, the elastic modulus was more susceptible to the residual stress than the hardness. Thus, we find that the residual stress should be controlled for the minimum measurement errors during the indenting test.

Study on Optimal Welding Condition for Shipbuilding Steel Materials (조선강재의 최적 용접조건에 관한 연구)

  • Kim, Ok-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.128-133
    • /
    • 2011
  • In this study, the steel material for shipbuilding(LR-A class) was used, and FCAW was taken advantage of 3G attitude and they are welded by different welding ways. As a result of analyzing wave with welding monitoring system, the stable values are obtained which are the first floor(electronic current 164~182 A, voltage 24 V), the second floor(electronic current 174~190 A, voltage 22~25 V), the third floor(electronic current 158~188 A, voltage 22~25 V), and fourth floor(electronic current 172~184 A, voltage 22~25 V), at this time, the stable wave standard deviation and changing coefficient could be obtained. When the welding testing through nondestructive inspection was analyzed know defect of welding, there was no defect of welding in A, D, E, but some porosities in B, and slag conclusion near the surface in C, because the length of arc was not accurate, and the electronic current and voltage was not stable. After observing the change of heat affect zone through micro testing, each organization of floor formed as Grain Refinement, so welding part was fine, the distance of heat affect zone is getting wider up to change the values of the electronic current and voltage. As a result of degree of hardness testing, the hardness orders were the heat affect zone(HAZ), Welding Zone(WZ), and Base Metal(BM). When the distribution of degree of hardness is observed. B is the highest degree of hardness The reason why heat effect zone is higher than welding zone and base metal, welding zone is boiled over melting point($1539^{\circ}C$) and it starts to melt after the result of analysis through metal microscope, so we can know that delicate tissue is created at the welding zone. Therefore, in order to get the optimal conditions of the welding, the proper current of the welding and voltage is needed. Furthermore the precise work of welding is required.

A STUDY ON THE HARDNESS IN VISIBLE LIGHT COMPOSITE RESIN (광중합(光重合) 레진의 경도측정(硬度測定)에 관(關)한 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1989
  • The purpose of this study was to measure Micro vicker's hardness of 4 kinds of anterior Composite resins (Pyrofil light bond anterior, Lite-fil anterior, Photo clear fil anterior, Silux) and 6 kinds of posterior Composite resin (Pyrofil light bond posterior. Lite-fil posterior, Photo clear fil posterior, Occlusin posterior, Palfique light posterior, P-30, posterior) according to deference of depth and distance of light tip from surface of composite resin. Each composite resin was filled into Teflon tube of 5mm in diameter and 5mm in depth, celluloid matrix was covered and the light in accordance with each composite resin was irradiated in distance of zero millimeter and 1 cm from light tip to surface of composite resin for 30 seconds. Specimens were sectioned longitudinally with cutting device. Microvicker's hardness measurements ware made at the depth of surface, 1mm, 2mm, 3mm, 4mm and 5mm from the surface to deep portion. Vicker's hardness numbers were taken on each depth under 200gm load for 30 seconds with MVK-E. The following results were: 1. The highest hardness value was measured at 1 mm depth. Then the deeper the depth, the lesser the hardness was observed. 2. The hardness value of anterior composite resins is lower than one of posterior composite resins. 3. Hardness number of composite resin irradiated in distance of zero millimeter from surface of composite resin was higher than one of 1 cm from surface of composite resin. 4. The pattern of hardness change at varying depth was similar to all the experimental material with no relation to distance of light from specimen.

  • PDF

A Study on the Surface Roughness Influenced by SM45C Hardness in High Frequency Induction Hardening (고주파열처리에 의한 SM45C 경도가 가공 표면 품위에 미치는 영향에 관한 연구)

  • Kim, W.I.;Heo, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • In this paper, the surface roughness influenced by Sm45C hardness in high frequency induction hardening and mechanical characteristics for the changed Hv 598 part and the unchanged hardness Hv 223 part by use of cermet and ceramic cutting tools was experimentally examined. Finally, we could be had some important results by processing surface roughness on cutting conditions such as cutting speed, feed rate, depth of cut and changes of tool nose radius. The results are summarized as follows. 1. In case of the same cutting condition, the hardness of workpiece was high and acquired the best processing surface roughness when the radius of the tool nose had 0.8 mm and feed rate was 0.04 mm/rev. 2. In case of the hardness of workpiece, though the cutting speed didn't have an effect on processing surface roughness, the less feed rate and the more processing surface roughness improved. On the other hand, the low inside the hardness of workpiece, the more cutting speed and the more feed rate increase, the processing surface of roughness improved. 3. Regardless of the hardness of workpiece, the change of the cutting depth didn't have great effect on the surface roughness. 4. On cutting the high surface hardness part with cutting tools of cermet and ceramic, it can be acquired the higher processing surface roughness because it hadn't been taken effect on cutting speed, In case of the cutting process of the low inside hardness part the two cutting tools have acquired the similar processing surface roughness.

  • PDF

Enamel strengthening effect of the dental fluoride compound (수종의 치과용 불소화합물의 물리적 조건에 따른 치질강화에 미치는 영향)

  • Kim, Joo-Won;Lee, Jung-Ae;Lee, Ka-Yean
    • Journal of Korean society of Dental Hygiene
    • /
    • v.10 no.4
    • /
    • pp.757-764
    • /
    • 2010
  • Objectives : The fluoride coating for caries prevention and strengthen enamel use NaF(sodium fluoride, Junsei Chemical Co., Ltd, Japan) 2% gel, SnF2(stannous fluoride, SIGMA-ALDRICH Gmbh, USA)8% gel and APF(acidulated phosphate fluoride, Sultan health care, USA) 1.23% gel. Methods : After put the enamel piece in these fluoride compound gel, we observed density level. And after measuring the vickers hardness, Got the following conclusions. Results : 1. After settling in the APF 1.23% during 6 days, we observed high density level of enamel surface using 250 magnification scanning microscope. The vacuum of surface packed (in) like sardines. 2. After settling in the APF 1.23% during 6 days, we observed reducing the space between the cluster of enamel surface using 50,000 magnification scanning microscope. 3. The vickers hardness change was very much on the all kinds of fluoride compound gel[2% NaF(sodium fluoride)gel, 8% SnF2(stannous fluoride) gel, 1.23% APF(acidulated phosphate fluoride)gel]. It's all because of reducing the space between the cluster of enamel surface(p<0.001). Conclusions : The vickers hardness change was very much on the all kinds of fluoride compound. It's all because of reducing the space between the cluster of enamel surface.