• Title/Summary/Keyword: Hardening agent

Search Result 87, Processing Time 0.022 seconds

Development of early strength type hardening Agent for Surface Soil Stabilization Method (연약지반 표층혼합처리를 위한 조기강도 발현형 고화재의 개발)

  • Ki, Tae-Kyoung;Kim, Ki-Hoon;Lee, Byung-Ki;Kwon, O-Bong;Kim, Kyoung-Min;Park, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.80-81
    • /
    • 2013
  • There is the increasing number of constructing soil or structure on the soft ground during public works. Usually cement or slag cement has been the traditional material for surface soil stabilization method. Recently, early strength development properties of hardening agent is required for driving abilities of execution equipment and shortening of the construction time. Therefore, the purpose of this study is to develop the early compressive strength hardening agent for surface soil stabilization. The study was confirmed performance and availability of hardening agent using early strength type cement and industrial by-product minerals through early strength development properties in accordance with water cement ratio, content of hardening agent for soft soil.

  • PDF

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘;한유찬;문성우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.731-738
    • /
    • 2002
  • Recently, as large constructions on the coast are performed frequently, surface layer stabilization method which Is one of the improvement methods for dredged soft clay has been applied. However, there have been few studies about the surface layer stabilization method. The purpose of this study is to clarify characteristics of ultra-soft marine clay and hardening agent. Also, optimal mixture ratio of hardening agent was verified through the laboratory tests such as statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil and standard mixing tables of hardening agent were determined according to ground conditions through statistical analysis. Also, applicability of surface layer stabilization method to field was verified by pilot tests. From the results of the tests, it was found that hardening agent materials such as cement, slag, fly-ash, inorganic salts, arwin, gypsum etc. affect on the appearing compressive strength. It was defined optimal mixture ratio which satisfies the required compressive strength from the statistical analysis. Also, It was compared the effect of ground improvement by cements and hardening agents through the pilot tests. This study will serve as data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

  • PDF

An Experimental Study on Optimal Mixture Ratio of Hardening Agent for Surface Soil Stabilization (연약지반 표층안정처리를 위한 고화재의 최적조합 산정에 관한 실험적 연구)

  • 천병식;김진춘;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.17-24
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent is properly mixtured with Fly ash, Gypsum, Slag and Cement for the ettringite hydrates which is effective for early stabilization of unconsolidated soil. The treated soil is the clay which are widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient, and marine clay in Jin-Hae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soil were peformed to get optimal mixture ratio for 16 stabilizer material of 6 type, and stabilizer mixing was determined.

  • PDF

The influence of Jelly strength and Hardening agent on microcapsules by complex coacervation (복합상분리법에 의한 마이크로캡슐 제조 -젤리강도 및 경화제에 따른 특성변화-)

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.9_10
    • /
    • pp.1172-1177
    • /
    • 2003
  • Microcapsules were prepared by complex coacervation between gelatin and gum arabic. The object of this work is evaluation of the effect of jelly strength, hardening agent on the particle size distribution, surface morphology and DSC. It was found that the 300bloom jelly strength caused microcapsules' size larger. When the amount of hardening agent increased, the particle mean diameter was larger. The amount of hardening agent was determined to be 10m1 for getting suitable size to finish the fabric.

Strength Characteristics of Epoxy Cement Mortar without Hardening Agent (경화제를 사용하지 않은 에폭시 시멘트 모르타르의 압축강도 특성에 관한 연구)

  • Park, Young-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.207-211
    • /
    • 2007
  • The durable lifetime of RC structures is shortened by various reasons, which are the generation of cracks in construction and service term, the exterior deterioration according to climatic condition, the surface damage due to chloride attack and the corrosion of reinforced bars. The durability of concrete structures is nevertheless able to be increased by the method and the material of reinforcement and repair. The epoxy resin is widely used for reinforment and repair of concrete because of the superiority in mechanical property, adhesive property, abrasion resistance, impact resistance and chemical resistance. The epoxy cement mortar with hardening agent has a lot of disadvantages that are troublesome mixing work, weakened weatherability and high cost for hardening agent. In this study, the mix proportion of mortar is presented just only with epoxy resin and some admixtures, and the test result of mortar without hardening agent shows the higher strength than the mortar with hardening agent. In the mix proportion, the weight of epoxy resin must be less than 15% of the unit weight of cement, and 10% of unit weight of cement is adequate for the weight of admixtures.

  • PDF

Properties of Cementless Loess Mortar Using Eco-Friendly Hardening Agent (친환경 무기질 고화재를 사용한 무시멘트 황토모르타르의 특성)

  • Jung, Yong-Wook;Kim, Sung-Hyun;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.355-365
    • /
    • 2015
  • This study examined the fluidity and strength properties, water resistance, durability, and freeze-thaw of cementless loess mortar using an eco-friendly hardening agent. The experimental result indicates that 28 days compressive and flexural strength of the loess mortar was increased regardless of the weathered granite soil and loess mixture ratio as the replacement ratio of the hardening agent increases. The strengths were significantly increased until 14 days regardless of the hardening agent, while the effect on the strengths increasement was relatively low after 14 days. Thus, the strength development of loess mortar concrete was found to be faster than that of the normal concrete. In addition, when the hardening agent of 10% was used, the average flexural strength was 1.7MPa which is insufficient compared to the 28-day flexural strength of 4.5MPa for the paving concrete. However, the flexural strengths of the loess mortar concrete using the hardening agents of 20% and 30% were 4.0MPa and 5.3MPa, respectively. Thus, the hardening agent need to be at least 20% so that the loess mortar can be used for paving concrete. The experiment for water resistance shows that the repeated absorption and dry reduced mass regardless of the mixing ratio of the loess. The maximum length change also decreased with increasing the substitution rate loess mixture ratio and the hardening agent. The result of the freeze-thaw resistance test indicates that the relative dynamic modulus of elasticity at 300 cycle freeze-thaw with the hardening agents of 20% and 30% were 75% and 79%, relatively. Thus, the hardening agent of at least 20% is required to obtain the relative dynamic modulus of elasticity of 60% for the loess mortar.

A Study on the Surface Soil Stabilization Method on Marine Clay (해성점성토의 표층안정처리 공법에 관한 연구)

  • 천병식;한기열
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization a sat ground This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specificutions. Hardening agent is properly mixed with Fly ash, Gyosum, Slag and Cement for the etmmngite hydrates which is dective for early stabilization of unconsoliokrred soil. \ulcornerhe treated soil is the clay tint is widely found here and there in Koresz In this study, preliminary tests were performed to get optirml mixture ratio of stabilizer ingredient, and mrvine clay in Jin-Hae was used to get physid and Md properties. Labomtory tests of 50 stabilized soil were performed to get optimal mixture mtio for 16-stabilizer merial a 6 types, a d stabilizer mixing was determined

  • PDF

The Evaluation of Optimum Hardening Agent Mixture Ratio for Surface Stabilization on Extremely Soft Marine Clay (초연약해성점성토 지반의 표층안정처리를 위한 최적고화재 배합비 산정에 관한 연구)

  • 천병식;한기열
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.408-415
    • /
    • 2001
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. The aim of this study if to determine optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent consists of fly ash, gypsum, slag and cement for the ettringite hydrates and if effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient and marine clay in Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get optimal mixture ratio for 16-stabilizer materials of 6 types, and mixture ratio of stabilizer ingredient and marine clay was determined.

  • PDF

Durability of Ultrarapid-Hardening Polymer-Modified Mortar (초속경 폴리머 시멘트 모르터의 내구성)

  • 이윤수;주명기;정인수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.153-158
    • /
    • 2001
  • The effects of polymer-cement ratio and shrinkage-reducing agent content on the durability characteristics of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. And, water absorption and mass change of chemicals resistance of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio.

  • PDF

A Study on the Surface Soil Stabilization on Marine Clay by the Hardening Agent (고화재에 의한 해성점성토의 표층안정처리에 관한 연구)

  • 천병식;양진석
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.92-97
    • /
    • 2001
  • Hardening agents have been the traditional material for surface soil stabilization of soft ground. This study aims at determining the optimal mixture ratio of the hardening agent in accordance with the required design specifications. Hardening agents which consists of fly ash, gypsum, slag and cement for the ettringite hydrates is effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found in Korea. In this study, preliminary tests were performed to get an optimal mixture ratio of the stabilizer ingredient and marine clay from Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get an optimal mixture ratio for 16-stabilizer materials of 6 types, and a mixture ratio of the stabilizer ingredient and marine clay was determined.

  • PDF