• Title/Summary/Keyword: Hardening Depth

Search Result 189, Processing Time 0.025 seconds

A Grounded Theory Approach on Correctional Officers' Adaptation Process of Job Stress (교정공무원의 직무 스트레스 적응과정에 대한 근거이론적 접근)

  • Jung, Hyun-Ok;Kim, Hee Sook
    • Research in Community and Public Health Nursing
    • /
    • v.32 no.1
    • /
    • pp.73-85
    • /
    • 2021
  • Purpose: The purpose of this qualitative study is to explore the adaptation process of correctional officers' job stress. Methods: Participants collected were fourteen officers who had experienced the adaptation process of job stress. Data were collected through individual in-depth interviews until the point of theoretical saturation from May to August, 2017. Transcribed interview contents were analyzed using Corbin and Strauss' grounded theory method. Results: A total of 98 concepts, 27 subcategories, and 10 categories were identified through the open coding. As a result of axial coding based on the paradigm model, the job stress adaptation process centering phenomenon of correctional officers was revealed as 'repeat-mark hardening', and the core category was extracted as 'endurance in hardening' consisting of a three-step process: enduring, understanding prisoner management procedures, and rebuilding. The rebuilding was considered as the key phase to escape the repeat-mark hardening and the participants utilized various strategies such as finding fun elsewhere, restoring confidence, accepting values of the prison officer in this phase. Conclusion: The results of this study suggest that the adaptation process of correctional officers' job stress can be a process that endurance the hardening. Therefore, it is necessary to develop systematic practical education and vocational motivation programs.

Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin (메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성)

  • Yoo, Tae-Ho;Chang, Byung-Ha;Hong, Hyun-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.31-38
    • /
    • 2018
  • The effects of polymer-binder ratio and metakaolin content on the properties of ultrarapid-hardening polymer-modified concretes using metakaolin are examined. As a result, regardless of the metakaolin content, the flexural, compressive and adhesion in tension strength of the ultrarapid-hardening polymer-modified concretes tend to increase with increasing polymer-binder ratio. Regardless of the polymer-binder ratio, the strengths of the ultrarapid-hardening polymer-modified concretes increase with increasing metakaolin content, and reaches a maximum at metakaolin content of 5%. The water absorption, carbonation depth and resistance of chloride ion penetration of the ultrarapid-hardening polymer-modified concretes decrease with increasing polymer-binder ratio. The resistance of freezing and thawing improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of polymer dispersion.

An Experimental Study of Al2017 on Characteristics of the Surface Roughness in Machining Center Processing (머시닝센터 가공에서 Al2017의 표면거칠기 특성에 관한 실험적 연구)

  • Kim, Chan-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.68-72
    • /
    • 2012
  • Al2017 is typical Duralumin of self-hardening aluminum alloy. It is lightweight, formability and machinability so throughout the industries have widely used automobile, electronics, semiconductor and aircraft as material. A variety of CNC machine tool processing technology, scientific principles and experience have been studied in order to increase accuracy and productivity. Using a machining center is to constant amount of side step and cutting characteristics studied changing depth of cut, revolution per minute and feed rate.

A Study on the Case Hardning Depth of Tool Steel by YAG LASER (YAG 레이저에 의한 공구강의 표면경화 깊이에 관한 연구)

  • 옥철호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.53-58
    • /
    • 1998
  • Case hardening of tool steel(SK5) was investigated after YAG laser irradiation. In the case of beam passes, martensite formed in the melt zone and in former pearlite regions of the austenization zone exhibited very high Vickers Hardness values. The molten depth and radius, micro structure, hardness were investigated as a function of defocusing distance, pulse width, and power density.

  • PDF

The Study of the Measurement Point for Wedge Factor (쐐기 인자 결정 깊이에 관한 연구)

  • 김현자;이병용;김계준;배훈식;최은경;장혜숙;안기정
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.13-22
    • /
    • 1992
  • Traditionally. the wedge factor of universal wedge is regarded as constant for small depth. Recently. some investigators have reported the beam hardening effect from wedged beam even in small depth. suggesting that the wedge factors are depth dependent values. Here authors performed the study to determine the proper depth of measurement for wedge factor. In this study. we have measured the wedge factors (nominal wedge angles 15, 30, 45, and 60) not only for depth maximum. but also for each depth, for several energies (4MV, 6MV, 10MV, and 15MV) of various machines (Varian, Siemens, Mitsubishi). And we have analysed the treatment depth of 614 patients who had been treated with wedged field at our hospitals to determine of the proper depth of the measurement point for wedge factor. More than 60% of the patients are treated at the depth of 8cm$\pm$2.5cm with the wedged field for various machines. energies, and wedge angles. The results of the wedge factor measurements show that the systemic error of average 2% (maximum 4%) might be inherently originated for the patients who had been treated with wedged field if we adapt the depth maximum as the wedge factor determination depth due to beam hardening effect. But we could achieve average error less than 0.5% (maximum within 1.7%) if we use 8cm for wedge factor measurement point We conclude that the measurement depth point for wedge factor should be 8cm in order to deliver more accurate dose to target for Korean patients. instead of depth maximum.

  • PDF

Magnetic field distribution in steel objects with different properties of hardened layer

  • Byzov, A.V.;Ksenofontov, D.G.;Kostin, V.N.;Vasilenko, O.N.
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.57-68
    • /
    • 2022
  • A simulation study of the distribution of magnetic flux induced by a U-shaped electromagnet into a two-layer massive object with variations in the depth and properties of the surface layer has been carried out. It has been established that the hardened surface layer "pushes" the magnetic flux into the bulk of the magnetized object and the magnetic flux penetration depth monotonically increases with increasing thickness of the hardened layer. A change in the thickness and magnetic properties of the surface layer leads to a redistribution of magnetic fluxes passing between the poles of the electromagnet along with the layer and the bulk of the steel object. In this case, the change in the layer thickness significantly affects the magnitude of the tangential component of the field on the surface of the object in the interpolar space, and the change in the properties of the layer affects the magnitude of the magnetic flux in the magnetic "transducer-object" circuit. This difference in magnetic parameters can be used for selective testing of the surface hardening quality. It has been shown that the hardened layer pushes the magnetic flux into the depth of the magnetized object. The nominal depth of penetration of the flow monotonically increases with an increase in the thickness of the hardened layer.

Characteristics of Surface Hardening of Nd:YAG Laser According to the Diameter variation of SM45C Cylindrical Bar (SM45C 환봉의 직경변화에 따른 Nd:YAG 레이저 표면경화 특성)

  • Lee, Ka Ram;Yang, Yun Seok;Hwang, Chan Youn;Park, Eun Kyeong;Yoo, Young Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.499-506
    • /
    • 2013
  • Heat-treatment is one of the core technologies to enhance various characteristics such as strength, hardness, toughness, abrasion resistance and fatigue resistance for the mold material. This paper focuses on characteristics of the laser heat-treatment according to the cylindrical bar diameter variation in case of the SM45C. From the results of the experiments, it has been observed that the maximum hardness is 744Hv when the power is 1630W and the travel of laser is 0.5m/min. And then, the hardness width, depth and microstructure were observed for characteristics. Finally, when the cylindrical bar diameter size grow, the hardness width decrease whereas hardness depth increase.

Evaluation of Flow Stress using Geometric Conditions of Ball Indentation Tests (볼 압입 시험의 기하학적 조건과 유동 응력 곡선의 관계에 관한 연구)

  • 이병섭;이호진;이봉상
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.328-333
    • /
    • 2003
  • Ball indentation tests have been used to estimate the mechanical properties of materials by several investigators. In this study, load-depth curves from ball indentation tests were analyzed using the geometric conditions of the contact between ball and specimen. A series of numerical calculations and experimental results showed that the contact load-depth curves could be simplified by linear functions. Once we obtained the contact indentation depth from linearizing the experimental indentation curves, the estimation process of the flow properties became straight-forward and the scatter of results could be drastically reduced.

Study on Torsional Strength of Induction-Hardened Axle Shaft (고주파 열처리를 고려한 액슬 축 비틀림 거동 연구)

  • Kang, Dae-Hyun;Lee, Bum-Jae;Yun, Chang-Bae;Kim, Kang-Wuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.645-649
    • /
    • 2010
  • Induction hardening has been used to improve the torsional strength and characteristics of wear for axle shaft that is used to transmit driving torque from the differential to the wheel in automobiles. After the rapid heating and cooling processes of induction hardening are carried out, the shaft has residual stress and material properties change; this affects the allowable transmitted torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction-hardened axle shafts with residual stress. In this study, the finite element method is used to study the thermomechanical behavior of the material, and the results are compared with experimental results. The results indicate that the torsional strength of the axle shaft depends on the surface hardening depth and distribution of residual stress.

Durability of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 초속경 폴리머 시멘트 모르타르의 내구성)

  • 이윤수;주명기;연규석;정인수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.660-667
    • /
    • 2002
  • The effects of polymer-cement ratio and antifoamer content on the durability of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, regardless of the antifoamer content, the setting time of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to delay with increasing polymer-cement ratio. The water absorption and chloride ion penetration depth of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder