• 제목/요약/키워드: Hardened Material

검색결과 284건 처리시간 0.032초

Effect of metakaolin on the properties of conventional and self compacting concrete

  • Lenka, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.31-48
    • /
    • 2017
  • Supplementary cementitious materials (SCM) have turned out to be a vital portion of extraordinary strength and performance concrete. Metakaolin (MK) is one of SCM material is acquired by calcinations of kaolinite. Universally utilised as pozzolanic material in concrete to enhance mechanical and durability properties. This study investigates the fresh and hardened properties of conventional concrete (CC) and self compacting concrete (SCC) by partially replacing cement with MK in diverse percentages. In CC and SCC, partial replacement of cement with MK varies from 5-20%. Fresh concrete properties of CC are conducted by slump test and compaction factor tests and for SCC, slump flow, T500, J-Ring, L-Box, V-Funnel and U-Box tests. Hardened concrete characteristics are investigated by compressive, split tensile and flexural strengths at age of 7, 28 and 90 days of curing under water. Carbonation depth, water absorption and density of MK based CC and SCC was also computed. Fresh concrete test results indicated that increase in MK replacement increases workability of concrete in a constant w/b ratio. Also, outcomes reveal that concrete integrating MK had greater compressive, flexural and split tensile strengths. Optimum replacement level of MK for cement was 10%, which increased mechanical properties and robustness properties of concrete.

리브라스 거푸집의 적용을 위한 실험적 연구 (An Experimental Study on the Application of Lib-lath Form)

  • 남정민;박무영;이영도;정상진
    • 한국건축시공학회지
    • /
    • 제4권4호
    • /
    • pp.103-108
    • /
    • 2004
  • In order for concrete as a basic material constituting reinforced concrete structure to meet the required performance, it is necessary to satisfy various requirements in concrete construction. Among them, form work has significant effects not only on the process of molding fresh concrete but also on the quality and performance of hardened concrete. Recently, the decrease and aging of form workers is becoming a great problem in the construction industry and, as a result, it is required to rationalize form works and reduce labor costs for employing form workers. Because form construction methods decide the type of form according to required performance, it is necessary to develop various form construction methods and examine their performance. Thus the present study purposed to expand the scope of application of form construction methods and, for this purpose, investigated the basic characteristics of rib- lath form and presented a system form construction method.

가위형버킷의 운동해석 및 원료 불출능력 향상 방안 (Motion Analysis of Scissors Type Bucket and Schemes for Improving Ore Scooping Performance)

  • 박상덕;강민성;원대희;김태주
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1886-1896
    • /
    • 2004
  • Various types of buckets are used as unloading facilities for raw material at unloading wharfs. Scissors type buckets, among them, has been being used widely because of their short cycle time and structural simplicity. However, the scooping capacity, especially for hardened remainder ore, of some buckets are unsatisfactory because of poor design concept of the buckets. In this study, the effects of the design parameters on the scooping performance of the buckets are investigated under kinematic and dynamic analysis. Further, the schemes and design guidelines for designing new scissors type buckets are also presented to improve ore scooping capacity for hardened remainder ore.

재생골재 콘크리트 구조체 적용성에 관한 실험적 연구(제2보, 경화 콘크리트의 성상을 중심으로) (An Experimental Study on The Application of Construction of Recycled Aggregate Concrete (part2, in the hardened concrete))

  • 김진만;류광우;남상일;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.12-15
    • /
    • 1993
  • Critical shortage of natural aggregate for production of concrete is developing in many urban area. At the same time increasing quantities of demolished concrete form deteriorated and obsolete structures are generated as a waste material in the same areas. The reuse of a waste concrete may settle the problems of environmental pollution and shortage of adquate aggregate, Therefore, this study is to reuse a waste concrete as aggregate for concrete, It is the purpose of this present study to investigate and analyze how the addition rates of superplasticizer and curing condition affect the properties of fresh and hardened recycled aggregate concrete comparing with those of ordinary concrete and crushed stone concrete.

  • PDF

YAG 레이저에 의한 SK5 표면경화 특성 (Surface Hardening Characteristics of SK5 Steel by Pulsed YAG LASER)

  • 강형식;문종현;전태옥;박홍식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.921-924
    • /
    • 1995
  • Case hardening behavior of carbon tool steel(SK5) was investigated after pulsed YAG laser irradiation. In the case od beam passes,martensite formed in the melt zone and in former pearlite regions of the austenitization zone exhibits vary high Vickers hardness values. The molten depth and width decrease as the beam power density increase. The influence of depth and width of color painted specimen was also investigated. The molten zone of the black painted specimen was the largest. The were loss of the black painted specimen was smaller than any other painted or raw material.

  • PDF

Fresh and hardened properties of concrete containing cold bonded aggregates

  • Thomas, Job;B., Harilal
    • Advances in concrete construction
    • /
    • 제2권2호
    • /
    • pp.77-89
    • /
    • 2014
  • The properties of fresh and hardened concrete made using three types of artificial cold bonded aggregates are determined. The properties, namely, slump, water absorption, compressive strength and splitting tensile strength of concrete containing artificial aggregate are reported. The variables considered are aggregate type and water-to-cement ratio. Three types of cold bonded aggregates are prepared using fly ash and quarry dust. The water-to-cement ratio of 0.35, 0.45, 0.55 and 0.65 is used. The test result indicates that artificial aggregates can be recommended for making the concrete up to a strength grade of 38 MPa. The use of quarry dust in the production of artificial aggregate mitigates environmental concerns on disposal problems of the dust. Hence, the alternate material proposed in this study is a green technology in concrete production.

고경도 금형강의 고속가공시 소직경 볼엔드밀의 마모에 대한 실험적 연구 (An Experimental Study on Tool Wear of Small Diameter Endmill for High Speed Milling of Hardened Mold Steel)

  • 양진석;허영무;정태성
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.57-64
    • /
    • 2006
  • High speed milling experiment on the hardened mold steel (CALMAX at hardness of HRC 55) is carried out using small diameter ball endmills. Tool lift and wear characteristics under the various machining parameters are investigated Effect of dynamic runout on the wear of the tool is also studied. For most of the cases, catastrophic chipping of tool edge is not observed and uniformly distributed wear on the flank surface of the tool is obtained. It is found that lower rate of tool wear is obtained as the cutting speed is increased. Also, high pick feed rate is found to be more favorable in terms of the tool wear and material removal rate.

STB-11 경도변화에 따른 CBN볼 엔드밀의 절삭특성 (Cutting Characteristics of CBN Ball Endmills for STD-11 of Various Hardnesses)

  • 최상우;이기우;이세균;이종찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1078-1082
    • /
    • 1997
  • The use of CBN tool material has been greatil increased because of the superior metal cutting performance for the machining of hardened steels. This paper presents some experimental results on the ball endmilling of hardened steels. Three different hardnesses of STB-11 workpieces were machined using CBN ball endmills, and the machining charteristics including cutting forces, tool wear, and surface roughness of machined surface were compared. It has been found that the CBN ball endmill works better in the machining of harder workpieces. The microscopic examination explains that this unusual phenomenon is cause by the difference of microstructure of each workpieces.

  • PDF

열처리한 합금공구강의 절삭에서 공구파손의 특성 (Fracture Characteristics of Cutting Tools in Machining of Hardened Alloy Steel)

  • 노상래;안상옥
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.199-205
    • /
    • 1994
  • The fracture characteristics and tool life of ceramics and WC, CBN cutting tool when turning heat treated steel STD11($H_RC$ 60) were investigated experimentally to clarify the machinability and optimum tool materials in cutting of difficult-to-cut material with high hardness. Forthermore, the behaviors of the tool wear and failure were examined with regard to cutting force. The hardened steel wore the cutting tool edge rapidily and increased the cutting forces, especially radial force. The tool was worn by the abrasive action. Flank Weat of $Al_2O_3-TiC$ ceramic and WC tool become relatively large and CBN & $Al_2O_3$, ceramic tool had a long life among the tool materials tested. The tool fracture patterns were just like minor cutting wear, flank wear, crater wear, notch wear, chipping. Flank wear rate was accelerated by occurrence of chipping. During the proceeding of machining, it was possible to foresee the catastrophic fracture of tool by abrupt increase of radial force.

  • PDF

고인성 섬유복합재료 ECC (Engineered Cementitious Composite)의 시공성 (Processibility of High Ductile Fiber-Reinforced ECCs (Engineered Cementitious Composites))

  • 김윤용;김정수;김진근;하기주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.313-316
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced cementitious composite ECC, which exhibits tensile strain-hardening behavior in the hardened state, optimizing both processing mechanical properties for specific applications is critical. This study introduced a method to develop useful ECCs in field, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). Control of rheological modulation was regarded as a key factor to allow the performance of the desired processing, while retaining the ductile material properties. To control the rheological properties of the composite, we first determined basic ECC compositon, which is based on micromechanics and steady-state cracking theory. The stability and consequent viscosity of suspensions were, then, mediated by optimizing dosages of chemical and mineral admixtures. The rheological properties altered by this approach were revealed to be effective in obtaining ECC hardened properties, allowing us to readily achieve the desired function of the fresh ECC.

  • PDF