• 제목/요약/키워드: Hardened Lightweight Cement

검색결과 18건 처리시간 0.025초

폴리에틸렌 튜브를 혼입한 경량 시멘트 경화체의 기초물성 평가 (An Evaluation on the Properties of the Hardened Lightweight Cement Using the Polyethylene Tube)

  • 김세영;전봉민;김효열;오상균
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 추계 학술논문 발표대회 논문집
    • /
    • pp.57-60
    • /
    • 2006
  • This study proposes the physical properties of the hardened lightweight cement using the polyethylene tube and to make the fundamental data regarding a new lightweight concrete development. The aerated concrete is displaying various effects such as lightweight, insulation characteristic and it is coming to be widely applied the slab layer of apartment as an insulating material but currently the aerated concrete has many problems. Therefore, demonstrating similar property of former aerated concrete and improving the defects, developing new hardened cement is needed. In this study, we predict adopting possibility of hollow core polyethylene tube, as a material to make cement hardening containing a lot of void. So we changed the mixing ratio, a diameter and length of the polyethylene tube and improved the compressive strength and unit capacity weight of the lightweight cement hardening body. From the test results, we judge that the aerated concrete is a developmental possibility.

  • PDF

단위중량 2,000kg/㎥급 고강도 시멘트 복합체 개발을 위한 기초연구 (Preliminary Study on Development of High Strength Cement Composites at 2,000kg/㎥ of Specific Weight)

  • 정연웅;임귀환;강용학;정상화;김주형
    • 한국건설순환자원학회논문집
    • /
    • 제8권4호
    • /
    • pp.562-570
    • /
    • 2020
  • 본 연구에서는 단위중량 2,000kg/㎥ 이하의 고강도 시멘트 복합체 제조기술 및 기초 물성을 탐구한다. 선행연구에서 제시한 초고성능콘크리트의 배합에서 잔골재를 경량 재료인 솔리드 버블과 경량잔골재로 치환하여 경량 고강도 시멘트 복합체를 제조기술을 제안한다. 솔리드 버블을 혼입한 시멘트 복합체는 밀도 2.0g/㎤ 이하에서 재령 28일 강도 116MPa~141MPa의 고강도 발현이 가능한 것으로 나타났다. 경량잔골재를 사용하는 경우 솔리드 버블을 혼입한 시멘트 복합체보다 역학적 성능이 떨어지는 것으로 나타났다. 배합표상에서 계산된 단위용적중량과 경화된 시멘트 복합체의 밀도가 큰 차이를 보이지 않았으며, 이는 배합표상에서 계산된 단위용적중량을 통해 경화된 시멘트 복합체의 밀도를 추정할 수 있는 것을 보여준다.

Correlations between the Impedance and Compressive Strength of Hardened Cement According to the Aggregate Type

  • Hojin Kim;Jinju Kim;Sungyu Park;Je Hyun Bae
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.242-252
    • /
    • 2024
  • To date, methods used to assess the interfacial transition zone (ITZ), which represents the boundary between the aggregate and paste inside concretes, have primarily relied on destructive tests, and non-destructive tests has received little attention until recently. This study assessed the interfaces of concretes with lightweight aggregates based on electrochemical impedance spectroscopy (EIS) for high-strength concretes and examined the possibility of estimating the compressive strength of concretes through non-destructive testing using EIS. The experimental results revealed that the impedance of the hardened cement increased with increasing compressive strength and aggregate density. In particular, when the results of impedance measurement were displayed as a Nyquist plot, the intercept of the x-axis depicting the effective conductivity was proportional to the compressive strength. Furthermore, an equivalent circuit was selected to interpret the correlation between cement aggregates and impedance. Consequently, the compressive strength was found to increase with the value of the resistances of the electrolyte filled in continuous pores in the cement aggregate. And, the pores formed in the ITZ affect this value. The resistance at the ITZ for different aggregates was also obtained, and it was found that the resistance was consistent with the results predicted by SEM images of the ITZ and correlated with the strength of the concretes. The proposed method can be used as a way to easily determine the strength of cement according to differences in aggregate.

구조용 경량골재 개발에 따른 경량콘크리트의 동결융해특성에 관한 연구 (Property Evaluation of the Freeze-Thawing for Lightweight Concrete with Development of Structural Lightweight Aggregates)

  • 장동일;채원규;조광현;김광일;손영현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.129-136
    • /
    • 1998
  • In this study, lightweight aggregates were developed to see the possible application as a structural uses. For the evaluation purpose, several testings were conducted to compare the physical characteristics between the controlled lightweight aggregates and other lightweight aggregates purchased from different sources. The tests included property changes of fresh concrete and strength characteristics of hardened concrete for both normal and high strength ranges. In addition, a experiment was performed to analyze the freezing and thawing resistance of new lightweight aggregate concrete against other lightweight aggregate concrete against other lightweight aggregate concretes with some experimental parameters such as lightweight aggregates, curing conditions, and water-cement ratio. The test showed that the new lightweight aggregate could be used structural components. Continuous study will be planned for future evaluations.

  • PDF

Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.69-78
    • /
    • 2017
  • This study aimed at exploring the effect of presoaking degree of lightweight aggregate (LWA) on the fresh and hardened properties of concrete. Two series (i.e., Series A and Series B) of concrete mixes that were made of LWA with different moisture states were prepared. The presoaking degree of LWA was divided into three types: oven dry state, 1 hour prewetted and 24 hours prewetted. For the Series A, the water content of the lightweight aggregate concrete (LWAC) mixes was adjusted in accordance with the moisture condition of the LWA. Whereas the amount of water added in the Series B mixes was deliberately not adjusted for the moisture condition of the LWA. Slump test, mechanical tests, interfacial transition zone microscopical tests and thermal conductivity test were carried out on the specimens of different concretes and compared with control normal-weight aggregate concretes. The test results showed that the effect of mixing water absorption by LWA with different moisture states was reflected in the fresh concrete as the loss of mixture workability, while in the hardened concrete as the increase of its strength. With the use of oven-dried LWA, the effect of reduction of water-cement ratio was more significant, and thus the microstructure of the ITZ was more compact.

혼화재를 사용한 고강도 경량콘크리트에 관한 실험적 연구 (An Experimental Study on High Strength Lightweight Concrete Using Compound Materials)

  • 김종인;최영화;김정훈
    • 한국산업융합학회 논문집
    • /
    • 제6권2호
    • /
    • pp.115-122
    • /
    • 2003
  • This experimental study on high strength lightweight concrete using compound materials has been performed. In which, expanded clay was used as coarse aggregate, and silica fume and fly ash as admixtures varying by 0, 10% and 0, 5, 10, 15, 20% of cement amount respectively were added. Thus, the properties of fresh and hardened concrete have been investigated. The results of this study can be summarized as follows ; Each slump loss of mixtures replaced fly ash has been decreased by increasing replacement rate. The compressive strength have shown 465, 428 and $401kgf/cm^2$ at 30, 40 and 50% of W/B in 28days respectively, all of which have satisfied the criterion $270kgf/cm^2$ of high strength lightweight concrete. The unit volume weight of hardened concrete has been decreased by increasing replacement rate of silica fume and fly ash, values of which have satisfied the criterion $2000kgf/cm^3$of light weight concrete.

  • PDF

표면 코팅 유무에 따른 경량골재의 EIS 특징 (EIS Properties of Lightweght Aggregate According to Surface Coating)

  • 편명장;정수미;김주성;김호진;박선규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.107-108
    • /
    • 2022
  • In recent years, the construction industry has a tendency to increase of high-rise builidngs. High rise buildings can use limited space efficiently. But High rise buildings have problem that have extremely heavy weight. Various studies are being conducted to reduce the weight of buildings. Although lightweight aggregate is a meterial that can effectively reduce the weight of buildings, the strength of the aggregate itself is weak and the absorption rate is high, so the strength of the ITZ(Interfacial Transition Zone) area is weak. Therefore, it is essential to improve the interfacial area when using lightweight aggregates. In this study, an experiment was conducted to improve the adhesion between the aggregate and cement paste and to strengthen the interfacial area by coating the surface of the lighteight aggregate with Blast Furnace Slag. To confirm the improvement, compressive strength and EIS(Electrochemical Impedance Spectroscopy) measurements were perfromed. Using EIS, the change in electrical resistance of the cement hardened body was confirmed. As a result, it was confirmed that the lightweight aggregate coated on the surface showed highter compressive strength and electrical resistance than the non-coated lightweight aggregate, and that the coating material was filled in the interfacial area and inside the aggregate that helped to strengthen the compresssive strength and higher electrical resistance.

  • PDF

Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar

  • Etli, Serkan;Cemalgil, Selim;Onat, Onur
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.241-252
    • /
    • 2021
  • An experimental program was conducted to investigate the fresh properties, mechanical properties and durability characteristics of the self-compacting mortars (SCM) produced with pumice powder and Artificial Lightweight Fine Aggregate (aLWFA). aLWFA was produced by using fly ash. A total of 16 different mixtures were designed with a constant water-binder ratio of 0.37, in which natural sands were partially replaced with aLWFA and pumice powder at different volume fractions of 5%, 10% and 15%. The artificial lightweight aggregates used in this study were manufactured through cold bonding pelletisation of 90% of class-F fly ash and 10% of Portland cement in a tilted pan with an ambient temperature and moisture content. Flowability tests were conducted on the fresh mortar mixtures beforehand, to determine the self-compacting characteristics on the basis of EFNARC. To determine the conformity of the fresh mortar characteristics with the standards, mini-slump and mini-V-funnel tests were carried out. Hardened state tests were conducted after 7, 28 and 56 days to determine the flexural strength and axial compressive strength respectively. Durability, sorptivity, permeability and density tests were conducted at the end of 28 days of curing time. The test results showed that the pumice powder replacement improved both the fresh state and the hardened state characteristics of the mortar and the optimum mixture ratio was determined as 15%, considering other studies in the literature. In the aLWFA mixtures used, the mechanical and durability characteristics of the modified compositions were very close to the control mixture. It is concluded in this study that mixtures with pumice powder replacement eliminated the negative effects of the aLWFA in the mortars and made a positive contribution.

반응표면분석법에 따른 경량기포콘크리트 최적배합 도출에 관한 연구 (Optimized Mixing Design of Lightweight Aerated Concrete by Response Surface Analysis)

  • 이상안;정찬우;김화중;안정현
    • 콘크리트학회논문집
    • /
    • 제21권6호
    • /
    • pp.745-752
    • /
    • 2009
  • 이 논문에서는 과산화수소를 사용한 경량기포콘크리트의 최적배합비를 제안하고 있다. 최적배합을 도출하기 위해 상용프로그램인 MINITAB을 사용하여 실험계획법을 적용하였다. 통계적 분석방법은 반응표면분석법 중 하나인 Box Behnken(B-B)계획법으로 하였다. 실험시 고려한 영향인자로는 단위시멘트량, 물시멘트비, 과산화수소비를 설정하였다. 분산분석에 따르면 경화상태에서 경량기포콘크리트의 물시멘트비와 과산화수소비는 절건밀도, 압축강도, 휨강도에 유의차가 있고, 단위시멘트량은 절건밀도에만 유의차가 있는 것으로 나타났다. 반응표면분석의 결과에서 과산화수소를 사용한 경량기포콘크리트의 최적배합비는 단위시멘트량 800 kg/$m^3$, 물시멘트비 44.33%, 과산화수소비 10%로 도출되었다.

Effect of rock flour type on rheology and strength of self-compacting lightweight concrete

  • Mazloom, Moosa;Homayooni, Seyed Mohammad;Miri, Sayed Mojtaba
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.199-207
    • /
    • 2018
  • With the development of concrete technology, producing concrete products that have the ability to flow under their own weights and do not need internal or external vibrations is an important achievement. In this study, assessments are made on using travertine, marble and limestone rock flours in self-compacting lightweight concrete (SCLC). In fact, the effects of these powders on plastic and hardened phases of SCLC are studied. To address this issue, concrete mixtures with water to cementitious materials ratios of 0.42 and 0.45 were used. These mixtures were made with 0 and 10% silica fume (SF) replacement levels by cement weight. To achieve lightweight concrete, lightweight expanded clay aggregate (Leca) with the bulk density of about $520kg/m^3 $was utilized. Also two kinds of water were consumed involving tap water and magnetic water (MW) for investigating the possible interaction of MW and rock flour type. In this study, 12 mixtures were studied, and their specific weights were in the range of $1660-1692kg/m^3$. To study the mixtures in plastic phase, tests such as slump flow, J-ring, V-funnel and U-box were performed. By using marble and travertine powders instead of limestone flour, the plastic viscosities and rheology were not changed considerably and they remained in the range of regulations. Moreover, SCLC showed better compressive strength with travertine, and then with marble rock flours compared to limestone powders. According to the results of the conducted study, MW showed better performance in both fresh and hardened phases in all the mixes, and there was no interaction between MW and rock flour type.