• Title/Summary/Keyword: Hard-tissue formation

Search Result 88, Processing Time 0.026 seconds

Mineral Imbalance: Bone Decalcification and Soft Tissue Calcification (무기질 불균형: 골 탈석회화와 연조직 석회화)

  • Jeong, Dae-Won;Lim, Hyun-Sook;Kang, Young-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1815-1819
    • /
    • 2009
  • Based on the soft and rigid extents, tissues are mainly divided into two groups in mammals, soft tissues including heart, lung, kidney and brain, and hard tissues including tendon, cartilage, teeth and bone. Among various tissues, bone, a dynamic rigid organ, is continuously remodeled by the opposing functional activity between bone formation by osteoblasts and bone destruction by osteoclasts. Bone protects the soft tissues and provides mineral reservoirs, which can supply the mineral needs of other soft tissues to normally maintain cellular function. While calcification in bone is an important action to fundamentally support the body and protect the soft tissues, calcification in soft tissues, including the heart, aorta, kidney, lung and spleen, results in severe organ damages, eventually causing sudden death. A growing body of evidence indicates that the osteoporotic patient who are aging, post-menopausal, diabetes and chronic kidney disease simultaneously represent a high clinical incidence of soft tissue calcification, illustrating a link between soft tissue calcification and bone decalcification (osteoporosis). This study will review what is currently known about the connection between bone decalcification and soft tissue calcification.

AN EXPERIMENTAL STUDY OF GUIDED BONE REGENERATION OF BONE DEFECTS IN RABBIT USING RUBBER DAM (가토에서 러버댐을 이용한 골결손부의 골조직 유도 재생술에 관한 실험적 연구)

  • Jang, Chang-Dug;Whang, Hie-Seong;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 1999
  • The principle of guided tissue regeneration (GTR), as applied to bone healing, is based on the prevention of connective tissue from entering the bony defect during the healing phase. This allows the slower bone producing cells to migrate into and reproduce bone within the defect. The principle of guided tissue regeneration has demonstrated a level of success in regenerating bone defect. Several types of membrane barrier, each one with distinct properties, have been utilized to apply this principle in bone regeneration. The purpose of this study is to introduce and discuss the attributes of rubber dam as a barrier membrane and evaluate whether improved bone regeneration can be achieved by GTR using rubber dam. In the 15 New Zealand white rabbits, full-thickness bone defects on three sites of each rabbit calvaria were made. Non membrane group served as a control and experimental group 1 was covered with rubber dam and group 2 covered with Gore-Tex$^{TM}$ membrane. Macroscopic, radiographic, microscopic examinations were made serially on 1, 2, 3, 6, 12 weeks after operation. The results were as follows: 1. Macroscopically, the control site was collapsed and filled with connective tissue throughout the experimental period. But the defects of experimental groups 1 and 2 were filled with bone-like mass and showed the hard consistency on palpation. 2. Radiographically, the early new bone formation appeared similarly from the host bone in groups 1 and 2. 3. Microscopically, there were much connective tissue at the central part of control site but the defect of group 1 and 2 was filled with the mature bony trabeculae on the 12th week. This results suggest that rubber dam can be effectively used as a barrier membrane for guided bone regeneration.

  • PDF

CLINICAL APPLICATION OF MTA(MINERAL TRIOXIDE AGGREGATE) FOR APEXIFICATION (치근단 형성술(Apexification)에 있어서 MTA(Mineral Trioxide Aggregate)의 적용)

  • Baik, Byeoung-Ju;Jeon, So-Hee;Kim, Young-Sin;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.700-708
    • /
    • 2001
  • Traumatic injuries in young patients can result in the interruption of the development of the incompletely formed roots. In teeth with incomplete root-end formation and necrotic pulps, the root canals must be completely debrided. Because of a lack of an apical stop and the presence of thin and fragile walls in these teeth, it is imperative to perform apexification to obtain an adequate apical seal. Calcium hydroxide has become the material of choice for apexification. Despite its popularity for the apexification procedure, calcium hydroxide therapy has some inherent disadvantages that include variablility of treatment time, unpredictability of apical closure, difficulty in patient follow-up, and delayed treatment. An alternative treatment to long-term apexification procedure is the use of an artificial apical barrier that allows immediate obturation of the canal. MTA(Mineral Trioxide Aggregate) is a powder consisting of fine hydrophilic particles of tricalcium silicate, tricalcium aluminate, tricalcium oxide and silicate oxide. MTA has a pH of 12.5 after setting, similar to calcium hydroxide. This may impart some antimicrobial properties. MTA has low solubility and a radiopacity slightly eater than that of dentin. Also, MTA leaked significantly less than other materials and induced hard-tissue formation more than other materials.

  • PDF

Expression of DSPP mRNA During Differentiation of Human Dental Pulp-derived Cells (HDPC) and Transplantation of HDPC Using Alginate Scaffold

  • Aikawa, Fumiko;Nakatsuka, Michiko;Kumabe, Shunji;Jue, Seong-Suk;Hayashi, Hiroyuki;Shin, Je-Won;Iwai, Yasutomo
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.73-79
    • /
    • 2006
  • Tissue stem cells are used for the regenerative medicine. In previous study we observed hard tissue formation of human dental pulp-derived cells using alginate scaffold. In this study, we explore the ability to differentiate of the 13th passage cells with glycerol 2-phosphate disodium salt hydrate (${\beta}-GP$) which accelerate calcification. Reverse transcriptase Polymerase Chain Reaction (RT-PCR), transplants using alginate scaffold and histological examination were performed. We observed the expression of DSPP mRNA on day 10 cultured cells with ${\beta}-GP$. In conclusion, the 13th passage cells still have an ability to differentiate into odontoblast-like cells and alginate supports the differentiation of cultured cells in the transplants.

Non-Traumatic Myositis Ossificans in the Lumbosacral Paravertebral Muscle

  • Jung, DaeYoung;Cho, Keun-Tae;Roh, Ji Hyeon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.5
    • /
    • pp.305-308
    • /
    • 2013
  • Myositis ossificans (MO) is a benign condition of non-neoplastic heterotopic bone formation in the muscle or soft tissue. Trauma plays a role in the development of MO, thus, non-traumatic MO is very rare. Although MO may occur anywhere in the body, it is rarely seen in the lumbosacral paravertebral muscle (PVM). Herein, we report a case of non-traumatic MO in the lumbosacral PVM. A 42-year-old man with no history of trauma was referred to our hospital for pain in the low back, left buttock, and left thigh. On physical examination, a slightly tender, hard, and fixed mass was palpated in the left lumbosacral PVM. Computed tomography showed a calcified mass within the left lumbosacral PVM. Magnetic resonance imaging (MRI) showed heterogeneous high signal intensity in T1- and T2-weighted image, and no enhancement of the mass was found in the postcontrast T1-weighted MRI. The lack of typical imaging features required an open biopsy, and MO was confirmed. MO should be considered in the differential diagnosis when the imaging findings show a mass involving PVM. When it is difficult to distinguish MO from soft tissue or bone malignancy by radiology, it is necessary to perform a biopsy to confirm the diagnosis.

Autotransplantation using the acellular dermal matrix seeded by periodontal ligament fibroblasts in minipig: histological evaluation as potential periodontal ligament substitutes (미니돼지에서 Acellular dermal matrix에 배양된 치주인대섬유모세포을 이용한 자가치아이식술: 치주인대로써의 잠재력에 대한 조직학적 평가)

  • Yu, Sang-Joun;Kim, Byung-Ock;Park, Joo-Cheol;Jang, Hyun-Seon
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • The aim of this study was to examine the possibility of periodontal ligament regeneration when autotransplantation was used by the periodontal ligament fibroblasts cultured on the acellular dermal matrix in teeth without a periodontal ligament. One minipig was used in this study. The mandibular and maxillary permanent incisors were ex-tracted for the culture of the periodontal ligament cells. The roots of the unextracted teeth were classified into a positive control group, in which the normal periodontal ligament was preserved. The roots of the extracted teeth were divided into the following two groups: The negative control group, in which the periodontal ligament had been removed and the acellular dermal matrix was not applied; and an experimental group, in which the periodontal ligament had been removed and periodontal ligament fibroblast cultured on an acellular dermal matrix was applied. The prepared teeth were transplanted, and completely submerged using physical barrier membranes. The animal was sacrificed 4 weeks after the autotransplant. The transplanted teeth were examined histologically. In this study, the periodontal ligament was normal in the positive control group, and ankylosis was discovered on the denuded root surface in the negative control group. Periodontal ligament-like connective tissue was found adjacent to the denuded root and the new cementum-like layer of hard tissue was formed in the experimental group. These results suggest that the periodontal ligament fibroblasts cultured on the acellular dermal matrix may play a role in regenerating the periodontal ligament-like tissue with new cememtum-like tissue formation.

A review of the regenerative endodontic treatment procedure

  • Lee, Bin-Na;Moon, Jong-Wook;Chang, Hoon-Sang;Hwang, In-Nam;Oh, Won-Mann;Hwang, Yun-Chan
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.179-187
    • /
    • 2015
  • Traditionally, apexification has been used to treat immature permanent teeth that have lost pulp vitality. This technique promotes the formation of an apical barrier to close the open apex so that the filling materials can be confined to the root canal. Because tissue regeneration cannot be achieved with apexification, a new technique called regenerative endodontic treatment was presented recently to treat immature permanent teeth. Regenerative endodontic treatment is a treatment procedure designed to replace damaged pulp tissue with viable tissue which restores the normal function of the pulp-dentin structure. After regenerative endodontic treatment, continued root development and hard tissue deposition on the dentinal wall can occur under ideal circumstances. However, it is difficult to predict the result of regenerative endodontic treatment. Therefore, the purpose of this study was to summarize multiple factors effects on the result of regenerative endodontic treatment in order to achieve more predictable results. In this study, we investigated the features of regenerative endodontic treatment in comparison with those of other pulp treatment procedures and analyzed the factors that have an effect on regenerative endodontic treatment.

Experimental study on the periodontal regenerative capacity of moldable synthetic peptide domain gel in degree III furcation defect of beagles (성견의 3급 이개부 병변에서 성형성 합성 펩타이드 젤의 치주재생 능력에 관한 실험적 연구)

  • Kim, Jeong-Beom;Park, Yoon-Jeong;Lee, Sang-Cheol;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Gu, Young;Rhyu, In-Chul;Han, Soo-Boo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.621-628
    • /
    • 2008
  • Purpose: Osteopontin is one of the major non-collagenous protein of hard tissue. Use of peptide domain of biologically active protein has some advantages. The objective of this experimental study is evaluation of periodontal regenerative potency of synthetic peptide gel which containing collagen binding domain of osteopontin in the degree III periodontal defect of beagle dogs. Material and Methods: Experimental degree III furcation defect was made in the mandibular third and fourth premolar of beagles. Regenerative material was applied during flap operation. 8 weeks after regenerative surgery, all animals were sacrificed and histomorphometric measurement was performed to calculate the linear percentage of the new cementum formation and the volume percentage of new bone formation. Result: The linear percent of new cementum formation was 41.6% at control group and 67.1% at test group and there was statistically significant difference. The volume percent of new bone formation was 52.1% at control group and 58.9% at test group. Conclusion: As the results of present experiment, synthetic peptide gel containing collagen binding domain of osteopontin significantly increase new bone and cementum formation in the degree III furcation defect of canine mandible.

REGIONAL ODONTODYSPLASIA : A REPORT OF TWO CASE (국소적 치아이형성증(regional odontodysplasia)에 대한 증례보고)

  • Son, Duk-Il;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 1997
  • Odontodysplasia is a rare developmental anomaly of tooth formation in which hard tissue are affected. Odontodyplasia affects the primary and permanent dentitions in the maxilla, mandible, or both jaws. The maxilla is involved twice as often as the mandible. The condition is more common in female than in male patients and in the anterior than in the posterior regions. The clinical manifestation of odontodysplasia are hypoplasia and hypocalcification of the enamel and dentin of affected teeth. Teeth tend to be small and discolored, with short roots and widely open pulp canal. Delayed eruption of affected teeth with abscess formation is common. Radiographically teeth assume a faint radiolucent image ("ghost teeth"). enamel and dentin appear thin and are similar in radiodensity. The pulp chambers are often larger than normal, calcifications(pulp stone and denticle) are found within them. The etiology of regional odontodysplasia is unknown. However, several causes have been discussed, including somatic mutation, local circulatory disorders, local trauma, failure of migration and differentiation of neural crest cells, local infection.

  • PDF

Gene Expression Profiling by Microarray during Tooth Development of Rats

  • Yoo, Hong-Il;Shim, Hae-Kyoung;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.151-159
    • /
    • 2015
  • Odontogenic cells express many genes spatiotemporally through complex and intricate processes during tooth formation. Therefore, investigating them during the tooth development has been an important subject for the better understanding of tooth morphogenesis. The present study was performed to identify the genetic profiles which are involved in the morphological changes during the different stages of rat tooth development using the Agilent Rat Oligonucleotide Microarrays. Morphologically, the maxillary 3rd molar germ at 10 days post-partum (dpp) was at the cap/bell stage. In contrast, the maxillary 2nd molar germ showed the root development stage. After microarray analysis, there were a considerable number of up- or down-regulated genes in the 3rd and the 2nd molar germ cells during tooth morphogenesis. Several differentially expressed genes for nerve supply were further studied. Among them, neuroligin 1 (Nlgn 1) was gradually downregulated during tooth development both at the transcription and the translation level. Also, Nlgn 1 was mostly localized in the dental sac, which is an important component yielding the nerve supply. This genetic profiling study proposed that many genes may be implicated in the biological processes for the dental hard tissue formation and, furthermore, may allow the identification of the key genes involved in the nerve supply to the dental sac.