• Title/Summary/Keyword: Hard real-time

Search Result 505, Processing Time 0.032 seconds

Real-time Recognition System of Facial Expressions Using Principal Component of Gabor-wavelet Features (표정별 가버 웨이블릿 주성분특징을 이용한 실시간 표정 인식 시스템)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.821-827
    • /
    • 2009
  • Human emotion can be reflected by their facial expressions. So, it is one of good ways to understand people's emotions by recognizing their facial expressions. General recognition system of facial expressions had selected interesting points, and then only extracted features without analyzing physical meanings. They takes a long time to find interesting points, and it is hard to estimate accurate positions of these feature points. And in order to implement a recognition system of facial expressions on real-time embedded system, it is needed to simplify the algorithm and reduce the using resources. In this paper, we propose a real-time recognition algorithm of facial expressions that project the grid points on an expression space based on Gabor wavelet feature. Facial expression is simply described by feature vectors on the expression space, and is classified by an neural network with its resources dramatically reduced. The proposed system deals 5 expressions: anger, happiness, neutral, sadness, and surprise. In experiment, average execution time is 10.251 ms and recognition rate is measured as 87~93%.

The Development of New GO-FLOW Methodology Using the Reliability of System Components (시스템 구성요소의 신뢰도를 기반으로 하는 새로운 GO-FLOW기법 개발)

  • Byun, Yoon-Sup;Lee, Ju-Yeong;Hwang, Kyu-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.8-15
    • /
    • 2012
  • The GO-FLOW methodology is capable of assessing system reliability. It models the system into a GO-FLOW chart with signal lines and operators and assesses the reliability of system by assessing the GO-FLOW chart sequential. But, as it models one component of system into several operators, the GO-FLOW chart which is different from the system flow diagram be modeled. Also, as it models the real operation time into "time point", it is hard to assess the reliability change according to the real operation time. Therefore, in this paper, the new GO-FLOW methodology which use the function(success/failure) of system components has been developed. It can assess the successful operating probability of system, regardless of the operating status of components. As it models one component of system into one operator, the GO-FLOW chart which is similar the system flow diagram can be modeled. Also, it is able to easily assess the successful probability of system according to the real operation time using the time in the operators.

Non-Causal Filter의 PC-NC에의 응용

  • 장현상;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1039-1042
    • /
    • 1995
  • In real time application such as motion control, it is hard to find the application of non-causal filtering due to its need for future position data, even though it shows wide usage in off-line digital signal processing. Recently, some of motion control areas such as learning and repetitive control use non-causal filtering technique in their application. these kinds of zero-lag non-causal filter application are very usful not only to reduce the machine vibration, but also to increase control accuracy with comparatively less work. In this paper, genuine method to implement zero-lag non-causal filter in a CNC is introduced. Also the variation of this implementation for the learning operation is suggested to give the NC better control performance for a specific job. By adopting the new NC architecture call Soft-NC, all these implementions are made possible here, and especially large memory requirement which hinders their usage for many years is no longer barrier in their real world application.

  • PDF

A Diagnosing System Development for Insulated Stator of Large Generator (대형 발전기의 고정자 절연 진단용 시스템 개발)

  • Park, Seong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.52-54
    • /
    • 2002
  • This research presented in this paper focuses on a system development for checking stator's wedge of large generator in heavy industry. The system is composed of impactor, A/D converter and digital signal processing board. Also this paper proposes a method for detection of stator's insulating state using analysis algorithm. As developed impact system is acting, impact wave is generated real time and transferred data to microprocessor. Using communication program this signal move microprocessor to hard directory of note book with 1000 data/sec. The developed system and analysis program performed very well by real stator's wedge in large generator.

Development of a Small Jet Engine Performance Test Device by Applying the Real-time Gas Turbine Engine Simulator (실시간 가스터빈 엔진 시뮬레이터를 적용한 소형 제트엔진 성능시험장치 개발)

  • Kho, Seonghee;Kong, Changduk;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.42-49
    • /
    • 2014
  • Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded small jet engine performance test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing micro jet engine performance test device that was previously developed by authors. This newly developed multi-purpose small jet engine performance test device is expected to be used for various educational and research purposes.

Study about implementation of the production management system that used RFID (RFID를 이용한 생산관리 시스템의 구현에 관한 연구)

  • Nam, Sang-Yep;Hun, Teak-Young;Park, In-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.811-812
    • /
    • 2006
  • This study is study about implementation of the production work management system that used RFID. A RFID Card system is used, and a collection totalizes and all data by real time, and, in production planning and work indication, work process time analyzes production present situation information by line by process automatically, and it is solution to be able to do an inquiry. The production related time that was hard to be measured are produced in the existing production management system exactly, and a grafting with solution of ERP, SCM, CMMS, etc is the study that is going to establish the possible most suitable system.

  • PDF

Production Work Management System Using RFID (RFID를 이용한 작업관리 시스템)

  • Park, In-Jung;Hyun, Taek-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.2 s.314
    • /
    • pp.31-36
    • /
    • 2007
  • In this paper, the implementation of production work management system using RFID has been studied. This paper provides a solution that the present status of production information obtained from data collected at real time using RFID card such as product plan, work order, and work processing time by line or by process is analyzed and referenced. The system was implemented to produce production relation time which is hard to measure in traditional production management system.

Automated Schedulability-Aware Mapping of Real-Time Object-Oriented Models to Multi-Threaded Implementations (실시간 객체 모델의 다중 스레드 구현으로의 스케줄링을 고려한 자동화된 변환)

  • Hong, Sung-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.2
    • /
    • pp.174-182
    • /
    • 2002
  • The object-oriented design methods and their CASE tools are widely used in practice by many real-time software developers. However, object-oriented CASE tools require an additional step of identifying tasks from a given design model. Unfortunately, it is difficult to automate this step for a couple of reasons: (1) there are inherent discrepancies between objects and tasks; and (2) it is hard to derive tasks while maximizing real-time schedulability since this problem makes a non-trivial optimization problem. As a result, in practical object-oriented CASE tools, task identification is usually performed in an ad-hoc manner using hints provided by human designers. In this paper, we present a systematic, schedulability-aware approach that can help mapping real-time object-oriented models to multi-threaded implementations. In our approach, a task contains a group of mutually exclusive transactions that may possess different periods and deadline. For this new task model, we provide a new schedulability analysis algorithm. We also show how the run-time system is implemented and how executable code is generated in our frame work. We have performed a case study. It shows the difficulty of task derivation problem and the utility of the automated synthesis of implementations as well as the Inappropriateness of the single-threaded implementations.

An Acceleration Technique of Terrain Rendering using GPU-based Chunk LOD (GPU 기반의 묶음 LOD 기법을 이용한 지형 렌더링의 가속화 기법)

  • Kim, Tae-Gwon;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • It is hard to represent massive terrain data in real-time even using recent graphics hardware. In order to process massive terrain data, mesh simplification method such as continuous Level-of-Detail is commonly used. However, existing GPU-based methods using quad-tree structure such as geometry splitting, produce lots of vertices to traverse the quad-tree and retransmit those vertices back to the GPU in each tree traversal. Also they have disadvantage of increase of tree size since they construct the tree structure using texture. To solve the problem, we proposed GPU-base chunked LOD technique for real-time terrain rendering. We restrict depth of tree search and generate chunks with tessellator in GPU. By using our method, we can efficiently render the terrain by generating the chunks on GPU and reduce the computing time for tree traversal.

Real-Time Spacer Etch-End Point Detection (SE-EPD) for Self-aligned Double Patterning (SADP) Process

  • Han, Ah-Reum;Lee, Ho-Jae;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.436-437
    • /
    • 2012
  • Double patterning technology (DPT) has been suggested as a promising candidates of the next generation lithography technology in FLASH and DRAM manufacturing in sub-40nm technology node. DPT enables to overcome the physical limitation of optical lithography, and it is expected to be continued as long as e-beam lithography takes place in manufacturing. Several different processes for DPT are currently available in practice, and they are litho-litho-etch (LLE), litho-etch-litho-etch (LELE), litho-freeze-litho-etch (LFLE), and self-aligned double patterning (SADP) [1]. The self-aligned approach is regarded as more suitable for mass production, but it requires precise control of sidewall space etch profile for the exact definition of hard mask layer. In this paper, we propose etch end point detection (EPD) in spacer etching to precisely control sidewall profile in SADP. Conventional etch EPD notify the end point after or on-set of a layer being etched is removed, but the EPD in spacer etch should land-off exactly after surface removal while the spacer is still remained. Precise control of real-time in-situ EPD may help to control the size of spacer to realize desired pattern geometry. To demonstrate the capability of spacer-etch EPD, we fabricated metal line structure on silicon dioxide layer and spacer deposition layer with silicon nitride. While blanket etch of the spacer layer takes place in inductively coupled plasma-reactive ion etching (ICP-RIE), in-situ monitoring of plasma chemistry is performed using optical emission spectroscopy (OES), and the acquired data is stored in a local computer. Through offline analysis of the acquired OES data with respect to etch gas and by-product chemistry, a representative EPD time traces signal is derived. We found that the SE-EPD is useful for precise control of spacer etching in DPT, and we are continuously developing real-time SE-EPD methodology employing cumulative sum (CUSUM) control chart [2].

  • PDF