• 제목/요약/키워드: Hard Rock Tunnel

검색결과 94건 처리시간 0.031초

경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구 (Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock)

  • 김영근;장정범;정한중
    • 터널과지하공간
    • /
    • 제6권3호
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

Hard rock TBM project in Eastern Korea

  • Jee, Warren W.
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2008년도 국제학술회의
    • /
    • pp.33-41
    • /
    • 2008
  • The longest tunnel has been halted at Daekwanryung by the failure of the host country of the Winter Olympiad in 2014, but modern High-Power TBM will come to Korea to excavate these long tunnels to establish the better horizontal connection between the western and eastern countries to improve the strong powerful logistic strategy of Korean peninsula. Train operation provides a key function of air movements in a long underground tunnel, and heat generation from transit vehicles may account of the most heat release to the ventilation and emergency systems. This paper indicates the optimal fire suppress services and safety provision for the long railway tunnel which is designed twin tunnel with length 22km in Gangwon province of Korea. The design of the fire-fighting systems and emergency were prepared by the operation of the famous long-railway tunnels as well as the severe lessons from the real fires in domestic and overseas experiences. Designers should concentrate the optimal solution for passenger's safety at the emergency state when tunnel fires, train crush accidents, derailment, and etc. The optimal fire-extinguishing facilities for long railway tunnels are presented for better safety of the comfortable operation in this hard rock tunnel of eastern mountains side of Korea. Since year 1900, hard rock tunnel construction has been launched for railway tunnels in Korea, tunnels have been built for various purposes not only for infrastructure tunnels including roadway, railway, subway, and but also for water and power supply, for deposit food, waste, and oils etc. Most favorable railway tunnel system was discussed in details; twin tunnels, distance of cross passage, ventilation systems, for the comfortable train operations in the future.

  • PDF

철도 터널 공사용 록볼트 인발 시험의 문제점과 개선방안에 관한 연구 (A Study on the Problem and Improvement Plan of Rock Bolt Pull Test for Railroad Tunnel Construction)

  • 장석재;곽수정;김두준
    • 한국철도학회논문집
    • /
    • 제9권1호
    • /
    • pp.89-94
    • /
    • 2006
  • We, presently, don't have clear diagram methods and analysis criteria in rock bolt pull test usable for tunnel reinforcement. So this paper has suggested that; first, 'scheme of apposite diagram method at hard rock and the different application method of rock bolt pull test at weathered and hard rock', and second, 'the pullout capacity specification criteria for design and construction of rock bolt', based on foreign criteria and field test.

Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum

  • Ning Jiao;Xing Wan;Jianwen Ding;Sai Zhang;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.131-143
    • /
    • 2024
  • Shield tunneling construction commonly crosses underground pipelines in urban areas, resulting in soil loss and followed deformation of grounds and pipelines nearby, which may threaten the safe operation of shield tunneling. This paper investigated the pipeline deformation caused by double curved shield tunnels in soil-rock composite stratum in Nanjing, China. The stratum settlement equation was modified to consider the double shield tunneling. Moreover, a three dimensional finite element model was established to explore the effects of hard-layer ratio, tunnel curvature radius, pipeline buried depth and other influencing factors. The results indicate the subsequent shield tunnel would cause secondary disturbance to the soil around the preceding tunnel, resulting in increased pipeline and ground surface settlement above the preceding tunnel. The settlement and stress of the pipeline increased gradually as buried depth of the pipeline increased or the hard-layer ratio (the ratio of hard-rock layer thickness to shield tunnel diameter within the range of the tunnel face) decreased. The modified settlement calculation equation was consistent with the measured data, which can be applied to the settlement calculation of ground surface and pipeline settlement. The modified coefficients a and b ranged from 0.45 to 0.95 and 0.90 to 1.25, respectively. Moreover, the hard-layer ratio had the most significant influence on the pipeline settlement, but the tunnel curvature radius and the included angle between pipeline and tunnel axis played a dominant role in the scope of the pipeline settlement deformation.

초기계측치를 이용한 경암 지반내 터널의 최총변위량 예측 (Estimation of Final Deformation of Hard Rock Tunnel Using Early Measured Deformation)

  • 송승곤;양형식;임성식;정소걸
    • 터널과지하공간
    • /
    • 제12권2호
    • /
    • pp.99-106
    • /
    • 2002
  • 터널의 초기 변형결과를 역해석에 적용하기 위하여 초기 값들과 최종변위의 상관관계를 연구하였다. Panet의 지수함수와 분수함수는 경암 터널의 내공변위 예측에 잘 맞았다. ID 지점의 초기 계측변위는 선형적으로 적합시 킬 수 있으나 계측 전 변형의 추정식으로는 부적합하였다. 초기 계측 결과들과 최종 변형결과는 선형적인 비례관계를 보였으며 이로써 초기 계측결과로부터 추정한 최종변형치를 이용한 역해석이 가능함을 보였다.

HARD ROCK에서의 T.B.M 공법 적용사례 (A Case Study on the Application of T.B.M Tunnelling in Hard Rock)

  • 박용운;박홍조
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1993년도 지하공간 건설기술에 관한 서울 심포지움 논문집
    • /
    • pp.103-118
    • /
    • 1993
  • The application of T.B.M tunnelling has been progressively increased since the first entrance into Korea in 1985 and especially, its higher performance and safety is widely proved as a generalized tunnelling in hardrock tunnel construction, comparing wi th conventional method. This case announcement will be much helpful for your general understanding of T.B.M tunnelling and the development of tunneling technology by introducing the brief methods and construction results from the actual application cases of T.B.M tunnelling in Ulsan Water Supply Tunnel Project, the longest tunnel in Korea under construction by YOU ONE. Co.

  • PDF

Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests

  • Chen, Guoqing;Li, Tianbin;Wang, Wei;Guo, Fan;Yin, Hongyu
    • Geomechanics and Engineering
    • /
    • 제13권1호
    • /
    • pp.63-77
    • /
    • 2017
  • The failure mechanism of a deep hard rock tunnel under high geostress and high geothermalactivity is extremely complex. Uniaxial compression tests of granite at different temperatures were conducted. The complete stress-strain curves, mechanical parameters and macroscopic failure types of the rock were analyzed in detail. The brittleness index, which represents the possibility of a severe brittleness hazard, is proposed in this paperby comparing the peak stress and the expansion stress. The results show that the temperature range from 20 to $60^{\circ}C$ is able to aggravate the brittle failure of hard rock based on the brittleness index. The closure of internal micro cracks by thermal stress can improve the strength of hard rock and the storage capacity of elastic strain energy. The failure mode ofthe samples changes from shear failure to tensile failure as the temperature increases. In conclusion, the brittle failure mechanism of hard rock under the action of thermal coupling is revealed, and the analysis result offers significant guidance for deep buried tunnels at high temperatures and under high geostress.

정보화 시공에서 Feed Back Analysis (터널, 암반사면, 지반굴착 등 Hard Material 사례중심으로) (The Role of Feed Back Analysis in Observational Method)

  • 김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.147-179
    • /
    • 2002
  • The important role of observational method in geotechnical engineering are emphasized together with the direction of future development, concerning successful application of the technique on the site investigation, design and feed back at various construction stages. Case histories on the application of feed back are introduced in order to achieve the most economical and reliable construction for tunnel, rock slope and deep excavations through feed back system at design and construction stages. Also the limitations and advantages of the observational method and the role of feed back system are discussed for construction of tunnel, rock slope and deep excavation in hard ground such as layered ground conditions including weathered, soft and hard rocks.

  • PDF

다변량분석을 이용한 터널에서의 간편 RMR에 관한 연구 (A Study of Simple Rock Mass Rating for Tunnel Using Multivariate Analysis)

  • 위용곤;노상림;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.493-500
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard to make out because it is difficult to estimate each valuation items through all kind of field situations and items of RMR have interdependence. So the experts of tunnel assessment have problems with rating rock mass. In this study, using multivariate analysis based on domestic data(1011EA) of water conveyance tunnel, we presented rock mass rating system which is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, orientation of discontinuities, intact rock strength, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system. And using data which have been collected at other site, we examined that presented multiple regression model was useful.

  • PDF

대구경 Shield TBM의 암반층 굴착속도 (Net Penetration Rate of a Large Diameter Shield TBM in Hard Rock)

  • 박철환;송원경;신중호;천대성
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2001년도 추계공동학술발표회 논문집
    • /
    • pp.115-120
    • /
    • 2001
  • In No. 1 tunnel for Kwnagju urban subway construction, net penetration rate of the shield TBM was analyzed. This tunnel of 540 m length is located in soil layers at starting and in hard rocks such as amphibolite and granitic gneiss at ending with 84 m length. The net penetration rate was dropped down to 2∼11 cm/hr in rock while 50∼80 cm/hr in soil. Theoretical penetration rate is analyzed in conditions of machine and rock in order to compare the actual net penetration rate. The relationships between net penetration rate and thrust force is also investigated in this report.

  • PDF