• 제목/요약/키워드: Hard C-Means (HCM) Clustering

검색결과 32건 처리시간 0.024초

HCM 클러스터링 기반 FNN 구조 설계 (Design of FNN architecture based on HCM Clustering Method)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2821-2823
    • /
    • 2002
  • In this paper we propose the Multi-FNN (Fuzzy-Neural Networks) for optimal identification modeling of complex system. The proposed Multi-FNNs is based on a concept of FNNs and exploit linear inference being treated as generic inference mechanisms. In the networks learning, backpropagation(BP) algorithm of neural networks is used to updata the parameters of the network in order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM(Hard C-Means)clustering algorithm which carry out the input-output dat a preprocessing function and Genetic Algorithm which carry out optimization of model The HCM clustering method is utilized to determine the structure of Multi-FNNs. The parameters of Multi-FNN model such as apexes of membership function, learning rates, and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization abilities of the model. NOx emission process data of gas turbine power plant is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

공작기계 열오차 모델의 최적 센서위치 선정 (Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools)

  • 안중용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

HCM 방법을 이용한 다중 FNN 설계에 관한 연구 (A Study on the Design of Multi-FNN Using HCM Method)

  • 박호성;윤기찬;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.797-799
    • /
    • 1999
  • In this paper, we design the Multi-FNN(Fuzzy-Neural Networks) using HCM Method. The proposed Multi-FNN uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. Also, We use HCM(Hard C-Means) method of clustering technique for improvement of output performance from pre-processing of input data. The parameters such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. We use the training and testing data set to obtain a balance between the approximation and the generalization of our model. Several numerical examples are used to evaluate the performance of the our model. From the results, we can obtain higher accuracy and feasibility than any other works presented previously.

  • PDF

UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화 (Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator)

  • 김길성;최정내;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

진화론적 정보 입자에 기반한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계 (Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems Based on Evolutionary Information Granulation)

  • 박건준;김현기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.340-342
    • /
    • 2004
  • In this paper, we introduce a new category of fuzzy inference systems baled on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of information with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

  • PDF

진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

적응형 계층적 공정 경쟁 기반 병렬유전자 알고리즘의 구현 및 비선형 시스템 모델링으로의 적용 (Implementation of Adaptive Hierarchical Fair Com pet ion-based Genetic Algorithms and Its Application to Nonlinear System Modeling)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.120-122
    • /
    • 2006
  • The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화 (Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms)

  • 오성권;박호성
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.487-496
    • /
    • 2000
  • 본 논문에서는, HCM 클러스러팅 방법과 유전자 알고리즘을 이용하여 다중 FNN 모델을 동정하고 최적화 한다. 제안된 다중 FNN은 Yamakawa의 FNN을 기본으로 하며, 퍼지 추론 방법으로 간략 추론을, 학습으로는 오류 역전파 알고리즘을 사용한다. 다중 FNN 모델의 구조와 파라미터를 동정하기 위해 HCM 클러스터링과 유전자 알고리즘을 사용한다. 여기서, 시스템 모델링을 위해 데이터 전처리 기능을 수행하는 HCM클러스터링 방법은 I/O 프로세서 공정 데이터를 이용하여 입출력 공간분할에 의한 다중 FNN 구조를 결정하기 위해 사용된다. 또한 유전자 알고리즘을 사용하여 멤버쉽함수의 정점, 학습율, 모멘텀 계수와 같은 다중 FNN 모델의 파라미터들을 동조한다. 모델의 근사화와 일반화 능력 사이에 합히적 균형을 얻기 위해 하중계수를 가진 합성 성능지수를 사용한다. 이 합성 성능지수는 근사화 및 예측 능력사이의 상호 균형과 의존성을 고려한 하중계수를 가진 합성 목적함수를 의미한다. 데이터 개수, 비선형성의 정도에 의존하는 이 합성 목적함수의 하중계수의 선택, 조절을 통하여 최적의 다중 FNN 모델을 설계하는 것이 유용하고 효과적임을 보인다. 제안된 모델의 성능 평가를 위하여 가스로 공정의 시계열 데이터와 비선형 함수의 수치 데이터를 사용한다.

  • PDF

클러스터링 기법을 이용한 비선형 공정의 병렬구조 모델링 (Parallel Structure Modeling of Nonlinear Process Using Clustering Method)

  • 박춘성;최재호;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.383-386
    • /
    • 1997
  • In this paper, We proposed a parallel structure of the Neural Network model to nonlinear complex system. Neural Network was used as basic model which has learning ability and high tolerence level. This paper, we used Neural Network which has BP(Error Back Propagation Algorithm) model. But it sometimes has difficulty to append characteristic of input data to nonlinear system. So that, I used HCM(hard c-Means) method of clustering technique to append property of input data. Clustering Algorithms are used extensively not only to organized categorize data, but are also useful for data compression and model construction. Gas furance, a sewage treatment process are used to evaluate the performance of the proposed model and then obtained higher accuracy than other previous medels.

  • PDF