• Title/Summary/Keyword: Haptics

Search Result 62, Processing Time 0.029 seconds

Study on Pulse Simulator of Oriental Medicine for Objective Structured Clinical Examination (OSCE) (한의학 객관구조화진료시험(OSCE)을 위한 진맥 시뮬레이터 개념 연구)

  • Kim, Kyoung-Shin;Kim, Kyoung-Ho;Choi, Chan-Hun;Lee, Soo-Jin;Kim, Byoung-Soo
    • The Journal of Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Objectives: The aim of this study was to examine the controversial issues about objective structured clinical examination (OSCE) of pulse diagnosis and investigate the objectification of traditional Korean medicine and technical feasibility of pulse simulation through the suggestion of a pulse simulator. Methods: The concept, validity and reliability of OSCE and the current situation of medical simulation was described. The actual level and problems on the simulator development was presented through haptics and tactile technology in order to compose a pulse simulator for OSCE. Results: The pulse wave system of a pulse simulator should materialize through haptic technology and the classification of the differences between tactile sensation and tactile quality is essential for the development of the relevant pulse simulator for OSCE in traditional Korean medicine. Conclusions: The introduction and controversial issues of OSCE and methodology of pulse wave reappearance system are proposed for the objectification of Traditional Korean Medicine and the development of clinical technology.

Analysis of Friction Signals Based on Sliding Tests with Finger for Tactile Sensibility (촉감 감성 해석을 위한 미끄럼 마찰 시험과 신호 분석)

  • Park, JinHwak;Park, SeMin;Sesaldo, May Grace;Lee, YoungZe
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.167-170
    • /
    • 2013
  • The friction behavior of human skin is determined by the complex interplay of the material and surface properties of the skin, as well as the contacting material, and strongly depends on the contact parameters (e.g., pressure and sliding velocity) and the presence of substances such as water, sweat, or skin surface lipids at the interface. Including a study on the effect of a surface's physical roughness for skin sliding over the surface, various studies have been conducted to understand human tactile sensibility. However, to investigate products in relation to human tactile sensibility, more objective research is needed. This study performed sliding experiments between the skin and the surfaces of phone cases to understand how the texture, friction, and stick-slip characteristics are related. Eight phone case surfaces with different topologies and chemical (or mechanical) compatibilities with skin were prepared and tested multiple times.

Estimation of Vertical Interaction Force to the End of a Surgical Instrument by Measuring Reaction Force to the Trocar Support (트로카 고정부에 작용하는 반력을 측정하여 수술도구 말단의 수직방향 상호작용 힘을 추정하는 방법)

  • Kim, Suyong;Kim, Cheongjun;Lee, Doo Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.615-618
    • /
    • 2016
  • This paper proposes a method to estimate vertical interaction force to the end of the surgical instrument by measuring reaction force at the part supporting the trocar. Relation between the force to the trocar and the interaction force is derived using the beam theory. The vertical interaction force is modeled as a function of the reaction force to the trocar and the distance between the drape plate and the trocar. Experimental results show that error is induced by the asymmetric shape of the trocar tip because contact position between the instrument and the trocar tip is changed depending on the direction of the interaction force. The theoretical relation, therefore, is compensated and reduced. Average $L_2$ relative error of the estimated force in the x-direction and the y-direction is 5.81 % and 5.99 %, respectively.

Multiple Vibration Signal Feedback for Mobile Devices (모바일 기기에서의 다중 진도 신호 피드백)

  • Yoo, Yongjae;Hwang, Inwook;Seo, Jongman;Choi, Seungmoon
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.8-17
    • /
    • 2012
  • In this paper, we introduce the appoaches that aim to improve user experience in mobile device by the use of multiple vibration signal feedback, conducted by Haptics and Virtual Reality laboratory at POSTECH. We introduce current progresses of our 'Vibrotactile flow using multiple vibration actuators' and 'Real-time dual-channel haptic music player.' The 'Vibrotactile flow using multiple vibration actuators' produces vibrotactile flow sensations by using multiple actuators and that improves the information transfer on mobile devices. The 'Real-time dual-channel haptic music player' generates vibrotactile sensation by transforming auditory signal, which improves the user experience of mobile devices. These approaches can be good examples to fulfill the demands of better information transfer capability and user experience on mobile devices.

  • PDF

Analysis of Tactile Effects on the Different Body Parts by the Various Vibration Patterns (다양한 진동 패턴에 따른 신체 부위의 촉감 효과 분석)

  • Lee, Hwan-Mun;You, Yong-Hee;Song, Chan-Ho;Jeong, Jin-Eon;Sung, Mee-Young;Jun, Kyung-Koo;Lee, Sang-Rak
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.163-167
    • /
    • 2008
  • This paper presents the analysis of tactile effects on different body parts according to the various vibration patterns. The experiments use a vibration pad made of 16 vibration elements in the form of $4{\times}4$ array. The vibration elements are controlled by a 8-bit microprocessor. The sound of gunshot initiates a vibration pattern on different body parts and its sensitivity is measured. The analysis of the experiments lead us to conclude that the vibration pad is the most realistic interface for shooting games and the shoulder part is the most sensitive part in the body. In addition, the most effective vibration pattern is the for the pattern which gives the sensation of spreading out from the center to the outside. This study analyzes the relationship between the human body parts and the tactile sensations by the various vibration patterns. The result of this study will be a good reference for user studies in the field of haptics based on the vibration.

  • PDF

Virtual Environments for Medical Training: Soft tissue modeling (의료용 훈련을 위한 가상현실에 대한 연구)

  • Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.372-377
    • /
    • 2007
  • For more than 2,500 years, surgical teaching has been based on the so called "see one, do one, teach one" paradigm, in which the surgical trainee learns by operating on patients under close supervision of peers and superiors. However, higher demands on the quality of patient care and rising malpractice costs have made it increasingly risky to train on patients. Minimally invasive surgery, in particular, has made it more difficult for an instructor to demonstrate the required manual skills. It has been recognized that, similar to flight simulators for pilots, virtual reality (VR) based surgical simulators promise a safer and more comprehensive way to train manual skills of medical personnel in general and surgeons in particular. One of the major challenges in the development of VR-based surgical trainers is the real-time and realistic simulation of interactions between surgical instruments and biological tissues. It involves multi-disciplinary research areas including soft tissue mechanical behavior, tool-tissue contact mechanics, computer haptics, computer graphics and robotics integrated into VR-based training systems. The research described in this paper addresses the problem of characterizing soft tissue properties for medical virtual environments. A system to measure in vivo mechanical properties of soft tissues was designed, and eleven sets of animal experiments were performed to measure in vivo and in vitro biomechanical properties of porcine intra-abdominal organs. Viscoelastic tissue parameters were then extracted by matching finite element model predictions with the empirical data. Finally, the tissue parameters were combined with geometric organ models segmented from the Visible Human Dataset and integrated into a minimally invasive surgical simulation system consisting of haptic interface devices and a graphic display.

  • PDF

Impact Analysis of Communication Time Delay and Properties of a Haptic Device on Stability Boundary for a Haptic System with a First-Order Hold (일차홀드 방식을 포함한 햅틱 시스템의 안정성 영역에 대한 통신시간지연과 햅틱장치 물성치의 영향 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.572-578
    • /
    • 2017
  • Haptic systems help users feel a realistic sensation when they manipulate virtual objects in the remote virtual environment. However, there are communication time delays that may make the haptic system unstable. This paper shows the relationship between communication time delay, properties of a haptic device, and the stability of the haptic system with the first-order hold method in a simulation. The maximum available stiffness of a virtual spring with the first-order hold method is larger than in the zero-order hold method when there is no time delay. However, when the communication time delay is much larger than the sampling time, the maximum available stiffness to guarantee the stability becomes the same, irrespective of the sample-hold methods. Besides, the maximum available stiffness increases in inverse proportion to the communication time delay and in proportional to the damping coefficient of the haptic device.

Comparison of LoG and DoG for 3D reconstruction in haptic systems (햅틱스 시스템용 3D 재구성을 위한 LoG 방법과 DoG 방법의 성능 분석)

  • Sung, Mee-Young;Kim, Ki-Kwon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.711-721
    • /
    • 2012
  • The objective of this study is to propose an efficient 3D reconstruction method for developing a stereo-vision-based haptics system which can replace "robotic eyes" and "robotic touch." The haptic rendering for 3D images requires to capture depth information and edge information of stereo images. This paper proposes the 3D reconstruction methods using LoG(Laplacian of Gaussian) algorithm and DoG(Difference of Gaussian) algorithm for edge detection in addition to the basic 3D depth extraction method for better haptic rendering. Also, some experiments are performed for evaluating the CPU time and the error rates of those methods. The experimental results lead us to conclude that the DoG method is more efficient for haptic rendering. This paper may contribute to investigate the effective methods for 3D image reconstruction such as in improving the performance of mobile patrol robots.

Approximate Friction and Gravity Compensation in Haptic Laparoscopic Surgery Simulator (햅틱 복강경 수술 시뮬레이터의 마찰력 및 중력 보상)

  • Kim, Sang-Hyun;Lee, Chang-Gyu;Kim, Ji-Suk;Ryu, Je-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.883-888
    • /
    • 2011
  • Laparoscopic surgery is being used in various surgical fields because it minimizes scarring. Laparoscopic operations require practical hand skills, so surgeons train on animals and via surgery training tool sets. However, these tool sets do not give the surgeon the sensation of touching real organs. A recently developed laparoscope simulator has a high friction force along the translational axis and a high gravity force along the pitch axis, and therefore it does not permit the operator to control his or her hands delecately. In the paper, the friction force along the axes is auumed to depend on the veolcity, and the gravity force on the angle and distance. We develop a compensation model that combines the gravity and friction force models.

Haptic Rendering Technology for Touchable Video (만질 수 있는 비디오를 위한 햅틱 렌더링 기술)

  • Lee, Hwan-Mun;Kim, Ki-Kwon;Sung, Mee-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.691-701
    • /
    • 2010
  • We propose a haptic rendering technology for touchable video. Our touchable video technique allows users for feeling the sense of touch while probing directly on 2D objects in video scenes or manipulating 3D objects brought out from video scenes using haptic devices. In our technique, a server sends video and haptic data as well as the information of 3D model objects. The clients receive video and haptic data from the server and render 3D models. A video scene is divided into small grids, and each cell has its tactile information which corresponds to a specific combination of four attributes: stiffness, damping, static friction, and dynamic friction. Users can feel the sense of touch when they touch directly cells of a scene using a haptic device. Users can also examine objects by touching or manipulating them after bringing out the corresponding 3D objects from the screen. Our touchable video technique proposed in this paper can lead us to feel maximum satisfaction the haptic-audio-vidual effects directly on the video scenes of movies or home-shopping video contents.