• Title/Summary/Keyword: Haptic Interaction Control

Search Result 34, Processing Time 0.026 seconds

Network-Adaptive Transport techniques for Haptic-enhanced Techniques (촉감 기반 시스템을 위한 네트워크 적응형 전송 기법)

  • Lee, Seok-Hee;Kim, Jong-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.12-18
    • /
    • 2008
  • This paper introduces the existing network-adaptive transport techniques for haptic-enhanced system. First we classify haptic-based network systems according to the communication architecture and data type. Then the existing studies concerning network QoS requirements for haptic-based network system are depicted. Finally, the survey of network-adaptive transport schemes is introduced devided into three key issues: delay and jitter compensation, error control, and transmission control.

  • PDF

A Survey of Haptic Control Technology (햅틱 제어 기술 동향)

  • Ryu, Je-Ha;Kim, Jae-Ha;Seo, Chang-Hoon;Lim, Yo-An;Kim, Jong-Phil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.283-295
    • /
    • 2009
  • Haptics technology allows one to interact with virtual environments, augmented environments, and real environments providing tactual sensory information. Science and technology of haptics can in general be classified into three groups: machine haptics, computer haptics, and human haptics. This paper surveys the state-of-the-art of haptic control technology for virtual environments and teleoperation (real environments) and then proposes possible future research directions in the following areas: haptic stability control, bilateral teleoperation control, and stability enhancement control.

Development of an Active Gait Assistive Device with Haptic Information (햅틱 연동 능동 보행보조장치 개발)

  • Pyo, Sang-Hun;Oh, Min-Kyun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • The purpose of this research is to develop a gait assistive device to enhance the gait stability and training efficiency of stroke patients. The configuration of this device is mainly composed of a motored wheel and a single cane whose lower end is attached to a motored wheel frame. A patient can feel haptic information from continuous ground contact from the wheel while walking through the grip handle. In addition, the wheeled cane can avoid using excessive use of the patient's upper limb for weight support and motivate the patient to use a paralyzed lower limb more actively. Moreover, the proposed device can provide intuitive and safe user interaction by integrating a force sensor and a tilt sensor equipped to the cane frame, and a switch sensor at the cane's handle. The admittance control has been implemented for the patient to change the walking speed intuitively by using the interaction forces at the handle. A hemi-paretic stroke patient participated in the walking assistive experiments as a pilot study to verify the effectiveness of the proposed haptic cane system. The results showed that the patient could improve walking speed and muscle activations during walking with a constant speed mode of the haptic cane. Moreover, the patient could maintain the preferred walking speeds and gait stability regardless of the magnitude of resistance forces with the admittance control mode of the haptic cane. The proposed robotic gait assistive device with a simple and intuitive mechanism can provide efficient gait training modes to stroke patients with high possibilities of widespread utilizations.

Stable Haptic Interaction with Reference Energy Following Scheme (에너지 추종방법을 이용한 안정적 햅틱 상호작용)

  • Ryu Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.277-283
    • /
    • 2006
  • A recently proposed method for stabilizing haptic interfaces and teleoperation systems was tested with a 'PHANToM' commercial haptic device. The 'Passivity Observer' (PO) and 'Passivity Control1er' (PC) stabilization method was applied to stabilize the system but also excited a high frequency mode in the device. To solve this problem, we propose a method to use a timevarying desired energy threshold instead of fixed zero energy threshold for the PO, and make the actual energy input follow the timevarying energy threshold. With the time-varying energy threshold, we make the PC control action smooth without sudden impulsive behavior by distributing the dissipation. The proposed new PO/PC approach is applied to PHANToM with high stiffness (K = 5000N/m), and stable and smooth contact is guaranteed. Resetting and active environment display problems also can be solved with the reference energy following idea.

Telepresence Robotic Technology for Individuals with Visual Impairments Through Real-time Haptic Rendering (실시간 햅틱 렌더링 기술을 통한 시각 장애인을 위한 원격현장감(Telepresence) 로봇 기술)

  • Park, Chung Hyuk;Howard, Ayanna M.
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2013
  • This paper presents a robotic system that provides telepresence to the visually impaired by combining real-time haptic rendering with multi-modal interaction. A virtual-proxy based haptic rendering process using a RGB-D sensor is developed and integrated into a unified framework for control and feedback for the telepresence robot. We discuss the challenging problem of presenting environmental perception to a user with visual impairments and our solution for multi-modal interaction. We also explain the experimental design and protocols, and results with human subjects with and without visual impairments. Discussion on the performance of our system and our future goals are presented toward the end.

On the Stability and Performance Limits of the Force Reflecting Haptic Manipulator (가상반발력을 생성하는 햅틱장비의 안정성과 성능한계에 관한 연구)

  • ;Greg R. Luecke
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.180-187
    • /
    • 1998
  • The stability and theoretical performance limits of the feedback controlled force reflecting haptic manipulator have been discussed. All the virtual environment which interact physically with the haptic system have its own stable performance limit. Three different realization of the interfaces have been compared using the driving point admittance. The haptic system which is separated from the human hand or finger is superior to its stable interaction provided that there is a means to apply a direct damping between the haptic manipulator and the human finger Electro-magnetic force is used for its digital implementation of the simple separated type haptic device. The stable limits of a virtual wall is calculated and experimental results show that there is performance limits in this implementation.

  • PDF

Impedance Control for Haptic Interface using Parameter Estimation Algorithm

  • Park, Heon;Lee, Sang-Chul;Lee, Soo-Sung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.119.1-119
    • /
    • 2001
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the feeling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/for co commands, impedance parameters are varying always. When the impedance parameters between an operator and ...

  • PDF

Development of exoskeletal type tendon driven haptic device (텐던 구동방식의 장착형 역/촉감 제시기구의 개발에 관한 연구)

  • 이규훈;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1285-1288
    • /
    • 1997
  • The basic technology of virtual reality can be described as the cognition of the condition change in virtual world by stimulating the visual, auditory, kinesthetic and tactile sensation. Among these, the kinesthetic and tactile sensation is one of the most important things to recognize the interaction. In this paper, it is addressed the haptic device which help the human feel the sense of the operator, and is designed in modular type to expand for five fingers later. the haptic device is driven by tendon and ultrasonic motors located in the wrist part. Each joint is actuated by coupled tendons and adopts more actrator by one than the number of the joints, called 'N+1 type'. The haptic device adopts metamorphic 4-bar linkage structure and the length of linkages, shape and the location of joint displacement sensor are optimized through the analysis.

  • PDF

Tangible Cooperation in Shared Virtual Environment

  • Irawati, Sylvia;Kim, Jong-Phil;Kim, Jin-Wook;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.214-220
    • /
    • 2009
  • Recent advanced technologies enable multiple users to share the virtual environment and work together as they are collocated. Additional sensory information such as haptic could improve the cooperation. In this paper, we propose a server-client architecture with multi-rate haptic control to support a tangible cooperation. Using our approach, the system is able to maintain a consistent simulation state across multiple users as well as to provide a highfidelity stable haptic interaction. To verify our approach, we have developed an experimental application and tested the cooperation among multiple users. The results confirm that our system is able to provide coherency among clients as well as haptic transparency.

  • PDF

Nanolithography Using Haptic Interface in a Nanoscale Virtual Surface (햅틱인터페이스를 이용한 나노스케일 가상표면에서의 나노리소그래피)

  • Kim Sung-Gaun
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Nanoscale task such as nanolithography and nanoindenting is a challenging work that is beyond the capabilities of human sensing and precision. Since surface forces and intermolecular forces dominate over gravitational and other more intuitive forces of the macro world at the nanoscale, a user is not familiar with these novel nanoforce effects. In order to overcome this scaling barrier, haptic interfaces that consist of visual and force feedback at the macro world have been used with an Atomic Force Microscope (AFM) as a manipulator at the nanoscale. In this paper, a nanoscale virtual coupling (NSVC) concept is introduced and the relationship between performance and impedance scaling factors of velocity (or position) and force are explicitly represented. Experiments have been performed for nanoindenting and nanolithography with different materials in the nanoscale virtual surface. The interaction forces (non contact and contact nanoforces) between the AFM tip and the nano sample are transmitted to the operator through the haptic interface.