• Title/Summary/Keyword: Haptic Control

Search Result 184, Processing Time 0.032 seconds

Tangible Cooperation in Shared Virtual Environment

  • Irawati, Sylvia;Kim, Jong-Phil;Kim, Jin-Wook;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.214-220
    • /
    • 2009
  • Recent advanced technologies enable multiple users to share the virtual environment and work together as they are collocated. Additional sensory information such as haptic could improve the cooperation. In this paper, we propose a server-client architecture with multi-rate haptic control to support a tangible cooperation. Using our approach, the system is able to maintain a consistent simulation state across multiple users as well as to provide a highfidelity stable haptic interaction. To verify our approach, we have developed an experimental application and tested the cooperation among multiple users. The results confirm that our system is able to provide coherency among clients as well as haptic transparency.

  • PDF

Graphic Deformation Algorithm for Haptic Interface System (촉각시스템을 위한 그래픽 변형 알고리즘)

  • Kang, Won-Chan;Kim, Sung-Cheol;Kim, Dong-Ok;Kim, Won-Bae;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.149-154
    • /
    • 2002
  • In this paper, we propose a new graphic deformation algorithm for haptic interface system. Our deformable model is based on non-linear elasticity, anisotropy behavior and the finite element method. Also we developed controller for high-speed communication. The proposed controller is based on the PCI/FPGA technology, which could progress the capability of the position calculating and the force data transmitting. The haptic system is composed of the 6DOF force display device, the high-speed controller, HIR library for 3D graphic deformation algorithm and the haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. We demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we programmed the simulation of force reflecting. As the result of experiment, we found that it has high stability and easy to control for deformable object than some other systems.

The Effects of Multi-Modal Cue for Haptic Imagery on Perceived Ownership (촉각적 심상화를 위한 다중감각 단서가 지각된 소유감에 미치는 영향)

  • Kim, Minsun;Han, Kwanghee
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.49-60
    • /
    • 2017
  • Previous research found that merely touching an object can create psychological ownership and the endowment effect. It was also found that just imagining touching an object without actually touching the object can make the same effect on psychological ownership. Prior research on haptic imagery examined the effect of haptic imagery induced by direct instruction of imaging on psychological ownership. We investigate a new method which can induce the haptic imagery in a more natural way than direct instruction of imaging. We manipulated imagery conditions such as visual-haptic congruence multimodal cue, visual-haptic incongruent multimodal cue, direct instruction condition and control condition, and examined the effects on imagery vividness, feeling of physical control, perceived ownership, and purchase intention. We conducted the experiment on 140 undergraduate students and our results showed that visual-haptic congruence multimodal cue condition is more effective than direct instruction of haptic imagery while visual-haptic incongruence multimodal cue condition is not effective. Our study extends prior haptic imagery research by making important marketing implications for online retailing.

Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot (복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어)

  • Yoon, Sung-Min;Kim, Won-Jae;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.

Haptic Joystick Implementation using Vibration Pattern Algorithm (진동패턴 알고리즘을 적용한 조이스틱의 햅틱 구현)

  • Noh, Kyung-Wook;Lee, Dong-Hyuk;Han, Jong-Ho;Park, Sookhee;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.605-613
    • /
    • 2013
  • This research proposes a vibration pattern algorithm to implement the haptic joystick to control a mobile robot at the remote site without watching the navigation environment. When the user cannot watch the navigation environment of the mobile robot, the user may rely on the haptic joystick solely to avoid obstacles and to guide the mobile robot to the target. To generate vibration patterns, there is a vibration motor at the bottom of the joystick which is held by the user to control the motion direction of the mobile robot remotely. When the mobile robot approaches to an obstacle, a pattern of vibration is generated by the motor, and by feeling the vibration pattern which is determined by the relative position of the mobile robot to the obstacle, the user can move the joystick to avoid the collision to the obstacle for the mobile robot. To generate the vibration patterns to convey the relative location of the obstacle near the mobile robot to the user, Fuzzy interferences have been utilized. To measure the distance and location of the obstacle near the mobile robot, ultrasonic sensors with the ring structure have been adopted and they are attached at the front and back sides of the mobile robot. The precise location of the obstacle is obtained by fusing the multiple data from ultrasonic sensors. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

Design of a novel haptic mouse system

  • Choi, Hee-Jin;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.51.4-51
    • /
    • 2002
  • $\textbullet$ A noval haptic mouse system is developed for human computer interface. $\textbullet$ Five bar mechanism is adapted for 2 dof force feedback with virtual environment. $\textbullet$ Double prismatic joint type mechanism is adapted to reflect 1 dof grabbing force feedback. $\textbullet$ Cable driven mechansim is used for actuation to reduce backlash and endow backdrivability. $\textbullet$ Virtual wall perception experiment is conducted to obtain force specification for haptic mouse. $\textbullet$ Average mouse workspace is measured using magnetic position tracker.

  • PDF

New Efficient Direct Kinematics for 6-dof Parallel-Serial Haptic Devices

  • Song, Se-Kyong;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.83.2-83
    • /
    • 2001
  • This paper presents a new formulation approach to reduce computational burden of the direct kinematics of 6-dof haptic devices with three sets of a parallel-serial linkage. Their direct kinematics has been formulated through employing the Denavit-Hartenberg notation, which results in complicated formulation procedures and heavy computational burden. For reducing these problems, this paper reconfigures the haptic devices into an equivalent kinematic model of the 3-6 Stewart-Gough Platform that has three connecting joints on the moving platform. Moreover, the direct kinematics of the 3-6 Platform can be effectively formulated by using the proposed Tetrahedron Approach.

  • PDF

A Five Degree-of-freedom Pen-based Cable-suspended Haptic Interface

  • Park, Kyihwan;Tie Yun;Byunghoon Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.4-25
    • /
    • 2001
  • In this paper, a five degree-of-freedom haptic device is proposed. The proposed haptic device has a pen which is suspended by tensioned six strings. Human operator handles the pen. Six DC motors are used as actuators to generate tensions in six strings to make resultant force feedback at the pen to the human operator Six encoders are used for calculating the movement of the pen. A digital controller is used for generate control signals for the suitable tension in the six strings. A current amplifiers is used for amplifying the control signals. Cable-suspended system has advantages of structure simplicity (only with several strings driven by motors without using other tensioning mechanisms), low inertia, and high force-to-weight ratio. Pen-based system has advantages of compactness and ...

  • PDF

A Study on Semantic Association between Transmitted Information and Design Parameters of Vibrotactile Signals

  • Kim, Sangho;Lee, Hyunsoo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.371-380
    • /
    • 2013
  • Objective: The aim of this study is to investigate the effects of design parameters of vibrotactile signals on semantic association with transmitted information conveying different meanings. Background: As information communication relying on human visual channel becomes excessive, the utility of vibrotactile signals is being interested as a substitute measure of delivering information. Properly designed hapticons may relieve burden of visual communication by rendering distinct and meaningfully compatible haptic sensations. Method: A typical Kansei engineering approach was adopted in this study. Ten most distinctive hapticons were selected among those having different frequencies and amplitudes. Associations between the hapticons and twenty four pairs of adjectives used to describe the state of automobile in control were gathered from thirty subjects using semantic differential scales. Results: The selected pairs of adjectives were summarized by factor analysis into two semantic dimensions named 'Awareness' and 'Directionality'. The experimental hapticons matched with the semantic dimensions were presented as a haptic emotion map. Conclusion: The results from this study support that frequencies and amplitudes of haptic signals play important roles in arousing different human perceptions regarding the two haptic emotional dimensions. Application: Properly designed hapticons with respect to the contents of transmitted information will increase human operator's situation awareness as well as system performance. The result from this study can be used to develop standardized hapticons for active haptic communication.

A Study of the real-time graphic deformation algorithm with virtual environment control (가상환경 제어에서 실시간 그래픽 변형에 관한 연구)

  • Kim, Young-Su;Bae, Chul;Kim, A-Hyun;Park, Kyung-Seok;Kang, Won-Chan;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2265-2267
    • /
    • 2003
  • In this paper, the virtual reality system is tried to developed, which controls not only the sense of sight and hearing but also the sense of touch, In order to develope the sense of touch in this study, the stable tactual transaction system, based on summing up the basic algorithm and theory is embodied. Especially, the graphic deformation algorithm is developed in realtime with using the deformed FEM. To apply the FEM, a deformed material model is produced and then the graphic deformation with this model is able to force. Finally, the graphic transaction algorithm is deduced by the realtime calculation and simplification because the purpose of this system is to transact in real time. The result of this study is that the proposed system is possible to deform the graphics and transact the haptic in real time in PC. The simulation program has been made to prove this result.

  • PDF