• Title/Summary/Keyword: Haptic Control

Search Result 184, Processing Time 0.019 seconds

Approximate Friction and Gravity Compensation in Haptic Laparoscopic Surgery Simulator (햅틱 복강경 수술 시뮬레이터의 마찰력 및 중력 보상)

  • Kim, Sang-Hyun;Lee, Chang-Gyu;Kim, Ji-Suk;Ryu, Je-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.883-888
    • /
    • 2011
  • Laparoscopic surgery is being used in various surgical fields because it minimizes scarring. Laparoscopic operations require practical hand skills, so surgeons train on animals and via surgery training tool sets. However, these tool sets do not give the surgeon the sensation of touching real organs. A recently developed laparoscope simulator has a high friction force along the translational axis and a high gravity force along the pitch axis, and therefore it does not permit the operator to control his or her hands delecately. In the paper, the friction force along the axes is auumed to depend on the veolcity, and the gravity force on the angle and distance. We develop a compensation model that combines the gravity and friction force models.

Obstacle avoidance of Mobile Robot with Virtual Impedance (가상임피던스를 이용한 원격 이동로봇의 장애물회피)

  • Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • In this paper, a virtual force is generated and fed back to the operator to make the teleoperation more reliable, which reflects the relationship between a slave robot and an uncertain remote environment as a form of an impedance. In general, for the teleoperation, the teleoperated mobile robot takes pictures of the remote environment and sends the visual information back to the operator over the Internet. Because of the limitations of communication bandwidth and narrow view-angles of camera, it is not possible to watch certain regions, for examples, the shadow and curved areas. To overcome this problem, a virtual force is generated according to both the distance between the obstacle and the robot and the approaching velocity of the obstacle w.r.t the collision vector based on the ultrasonic sensor data. This virtual force is transferred back to the master (two degrees of freedom joystick) over the Internet to enable a human operator to estimate the position of obstacle at the remote site. By holding this master, in spite of limited visual information, the operator can feel the spatial sense against the remote environment. It is demonstrated by experiments that this collision vector based haptic reflection improves the performance of teleoperated mobile robot significantly.

Investigation of the Force Transmission Affect by Visual Information and Previous Experience in Virtual Environment (가상환경에서 시각정보와 사전 경험이 힘전달에 미치는 영향에 대한 연구)

  • Lee, JaeHoon;Hwang, HoSung;Yun, WonSik
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • The purpose of this paper is to examine how the humans learn and perceive the weight of objects corresponding to visual information in virtual environment. We conducted two kinds of load-on-tasks with two virtual objects that have same weight but different visual cues; have same visual cues but changed weight by trails. We found that the subject could not generate appropriate force for the smaller and changed weight objects in the beginning of the trials. the discrepancy between the expected weight and actual force consequences sue to visually invoked size and previous experience made subjects perceive the small object were heavier. one the other hand, after the tasks were repeated, the subject responded the weights were the same or very similar when the mismatch between the expected weight and the actual weight became vanished. this means that the sensorimotor feedback influences the anticipatory control scheme and weight perception aggressively in virtual environment.

Desigining a Feedback for Exercises Using a Wearable Device (웨어러블 디바이스를 활용한 운동 중 피드백 방식 연구 - 근력 운동에 대한 멀티 모달 피드백 적용을 중심으로 -)

  • Yoo, Hyunjin;Maeng, Wookjae;Lee, Joongseek
    • Journal of the HCI Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.23-30
    • /
    • 2016
  • The landscape of the current fitness trackers is not only limited to the aerobic exercises but also the weight training is comparatively excluded. Recently, a few weight training fitness tracker was released, human-computer interaction was not well designed due to the lack of considering the context. Because body movement would be intense while doing exercises, having exercise performers hold or operate a device makes a negative experience. As the wearable device is always inseparable to body, it could provide effective feedback because holding or operating a device is not necessary. Therefore, this study aims to make the exercise performers feel a natural feedback through the wearable device to do effective exercises. As a result, this study identified three findings. First, the information which exercise performers most needed was 'during exercise.' and the most necessary information for exercise performers through wearable device's sensory feedback was about 'pace control' with counting and motivation. Second, the order of the most preferred presentation type of sensory feedback was auditory feedback, haptic feedback and visual feedback. Third, the satisfaction, utility, usefulness score of sensory feedback as same as the personal trainer's feedback. In conclusion, this study illustrated the feedback design implications using a wearable device while doing weight training and the possibilities that wearable device could be substitute for personal trainer.