• Title/Summary/Keyword: Haptic

Search Result 590, Processing Time 0.026 seconds

Haptic Joystick Implementation using Vibration Pattern Algorithm (진동패턴 알고리즘을 적용한 조이스틱의 햅틱 구현)

  • Noh, Kyung-Wook;Lee, Dong-Hyuk;Han, Jong-Ho;Park, Sookhee;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.605-613
    • /
    • 2013
  • This research proposes a vibration pattern algorithm to implement the haptic joystick to control a mobile robot at the remote site without watching the navigation environment. When the user cannot watch the navigation environment of the mobile robot, the user may rely on the haptic joystick solely to avoid obstacles and to guide the mobile robot to the target. To generate vibration patterns, there is a vibration motor at the bottom of the joystick which is held by the user to control the motion direction of the mobile robot remotely. When the mobile robot approaches to an obstacle, a pattern of vibration is generated by the motor, and by feeling the vibration pattern which is determined by the relative position of the mobile robot to the obstacle, the user can move the joystick to avoid the collision to the obstacle for the mobile robot. To generate the vibration patterns to convey the relative location of the obstacle near the mobile robot to the user, Fuzzy interferences have been utilized. To measure the distance and location of the obstacle near the mobile robot, ultrasonic sensors with the ring structure have been adopted and they are attached at the front and back sides of the mobile robot. The precise location of the obstacle is obtained by fusing the multiple data from ultrasonic sensors. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

A Patellar Surgery Haptic Simulator for Veterinary Training (수의학 훈련을 위한 슬개골 수술 햅틱 시뮬레이터)

  • Lee, Jun;Eom, KiDong;Seo, Anna
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Patella surgery of small animal is an important veterinary surgery that the veterinarian should saw and drill the dislocated patella in order to fix the corrected position. However, the animal protection laws restrict the veterinarian students' chances for the practice and training of the patella surgery. This paper proposed a haptic based patella surgery simulator for veterinarian students. We modelled force feedback methods in order to provide best similar haptic feedbacks to the real drilling feedbacks in the patella surgery. The proposed patella drilling simulator provides haptic interface as a drill and a workbench in order to provide best surgery experiences. We conducted the performance evaluations in order to prove usability of the proposed patella surgery interface.

A Study on the Implementation of Multi-touch model using a Haptic Device in Virtual Reality (가상현실에서 Haptic 디바이스를 활용한 멀티터치 모델 구현에 관한 연구)

  • Kang, Im-Chul;Kim, Beom-Seok;Hur, Gi-Taek;Ko, Young-Hyuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.83-90
    • /
    • 2010
  • In this paper, we use VR technologies including touch processing technologies and haptic devices to offer touch of fish objects to users. The Omni, a kind of haptic device and made by Sensable Inc., is used to implement multi touch model in VR space. In addition, Matlab/Simulink and proSENSE Virtual Touch Toolbox of Handshake Inc., are used as programing tools. Functions needed to describe the movement of x, y, and z axis respectively are applied to delineate the natural movement of fish objects modeled with 3D. Such movements offer realistic physical interactions to two users controlling multi point respectively. In experiment, to perceive the appearance of 3D object by touch and to feel the respiration by touch are well conducted. We also verify that it is possible to develop games or contents through multi participation in VR Space by using multi point.

Haptic Technology for Educational Contents for Children with Disabilities (햅틱 테크놀로지를 활용한 장애 아동 교육 콘텐츠 연구)

  • Kwon, Jung-Min;Nam, Bo-Ram
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.505-517
    • /
    • 2011
  • The haptic sense is one of the five human senses that deeply affects cognitive development and everyday lives of children and adults. Recently, researchers and developers have started active discussions and research on haptic technologies. The purpose of this paper is to explain the role of haptics in learning, review studies that have attempted to use haptic technologies to teach students, and discuss how these technologies can be applied in special education context. National and international databases were searched and analyzed using meta-analysis methods. The few studies that have been completed so far are heavily focused on math and science learning. However, haptic technology has great potentials for children with disabilities who can benefit from extra assistance from these devices in wide areas of curriculum including math, science, music, art, history, and so on.

Development and Characterization of Asymmetric Swelling-Induced Wrinkles on Natural Rubber Surface

  • Lee, Gi-Bbeum;Sathi, Shibulal Gopi;Kim, Min Jung;Park, Changsin;Huh, Yang Il;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • Characteristics of the swelling-induced wrinkles on the surfaces of natural rubber (NR) film were investigated. The wrinkle structure was generated by swelling of NR film pre-stretched and firmly bonded onto an aluminum substrate in hexane. A novel experimental method was adopted to replicate the swelling-induced wrinkles on the NR film using an epoxy-hardener system. To get insight into the wrinkle parameters; the wrinkle length (L), wrinkle distance (D), wrinkle height (H) and the angle between two consecutive wrinkles (${\theta}$), the cross-sections of the replicas obtained from saturated swollen NR film were examined using an optical microscopy (OM). From the OM images, the wrinkling parameters were measured as a function of the thickness of NR film from 0.42 to 1.76 mm. Also, it was evaluated that the effects of swelling time on the wrinkling parameters. The length (L), distance (D) and height (H) of wrinkles increased as the thickness of the NR film and the swelling time increased. However, the angle between the wrinkles (${\theta}$) showed a sharp decrease up to a swelling time of 200 minutes and slightly decreased afterwards.

3D Surface Painting in VR using Force Feedback (포스 피드백을 이용한 가상현실에서의 3차원 표면 페인팅)

  • Kim, Minyoung;Kim, Young J.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In this paper, we propose haptic interfaces based on force feedback to provide a physical painting experience to virtual reality users. Through this system, the user can create surface-based painting holding a haptic stylus, while utilizing both visual feedback from the worn HMD and haptic feedback during painting. In particular, the haptic interfaces simulate the physical interaction between painting brush and painting, which can help to improve the spatial perception of users and compensate for visual feedback. This can reduce laborious drawing works to repeatedly paint strokes and therefore yield a better painting performance. As a result, users can experience more effective and realistic VR painting with this system.

A Study of measuring the difference threshold to understand the haptic discrimination element of the handling button in electronic product (전자제품 조작 버튼의 촉각 변별 요소 파악을 위한 차이역 측정 연구)

  • 이건효;최인환;양승무
    • Archives of design research
    • /
    • v.12 no.4
    • /
    • pp.221-229
    • /
    • 1999
  • There are not a few cases which we can handle more safely and conveniently in using the general goods if a haptic clue is offered to a user as a basis of an important judgment.The first purpose of this study is to embody how to study to understand the haptic discrimination element of the handling button in electronic product which can work as the essential elements in the product design and the physical interface. And the next purpose is to investigate basically the way of the adequate usage. We analyzed the basic materials through this study on the documents and planned the experiments with the analyses. We carried out planned experiments, analyzed, and integrated the experimental results. This means making the standard objectively in developing the shape which is an important element of the product design. And it also means the developing and extracting the way of objective information of the haptic intended.

  • PDF

Development of Virtual Science Experience Space(VSES) using Haptic Device (역감 제시 장치를 이용한 가상 과학 체험 공간 개발)

  • 김호정;류제하
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1044-1053
    • /
    • 2003
  • A virtual science experience space(VSES) using virtual reality technology including haptic device is proposed to overcome limits which the existing science education has and to improve the effect of it. Four example scientific worlds such as Micro World, Friction World, Electromechanical World and Macro World are demonstrated by the developed VSES. Van der Waals forces in Micro World and Stick-Slip friction in Friction World, the principle of induction motor and power generator in Electromechanical World and Coriolis acceleration that is brought about by relative motion on the rotating coordinate are modeled mathematically based on physical principles. Emulation methods for haptic interface are suggested. The proposed VSES consists of haptic device, HMD or Crystal Eyes and a digital computer with stereoscopic graphics and GUI. The proposed system is believed to increase the realism and immersion for user.

Effect of the sampling time of high-frequency ZOH and a physical damper on stable haptic interaction (고주파 영차홀드의 샘플링 주기와 물리적 댐퍼가 안정적인 햅틱 상호작용에 미치는 영향)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.649-654
    • /
    • 2019
  • Stable haptic interaction with virtual environments is essential not only for the safety of the user but also for improving the immersion of the user. If the coefficient of a virtual spring is increased, the system becomes unstable. Therefore, the coefficient of the virtual spring is limited. The haptic system with the high-frequency zero-order-hold (HF-ZOH) is proposed to enhance the stability margin of a virtual spring. In this paper, the relationship among the sampling period of HF-ZOH, the coefficient of the physical damper, and the maximum stable margin of the virtual spring is analyzed. The lager the coefficient of the physical damper is, the shorter the sampling period of the HF-ZOH is, the larger the stable region of the virtual spring becomes. If the ratio N is larger than 40, the stable region of the proposed method is about three times to eight times that of the previous method, according to the coefficient of the physical damper. Hence the method enables to improve the user's realism in virtual environments.

Acceleration signal-based haptic texture recognition according to characteristics of object surface material using conformer model (Conformer 모델을 이용한 물체 표면 재료의 특성에 따른 가속도 신호 기반 햅틱 질감 인식)

  • Hyoung-Gook Kim;Dong-Ki Jeong;Jin-Young Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.214-220
    • /
    • 2023
  • In this paper, we propose a method to improve texture recognition performance from haptic acceleration signals representing the texture characteristics of object surface materials by using a Conformer model that combines the advantages of a convolutional neural network and a transformer. In the proposed method, three-axis acceleration signals generated by impact sound and vibration are combined into one-dimensional acceleration data while a person contacts the surface of the object materials using a tool such as a stylus , and the logarithmic Mel-spectrogram is extracted from the haptic acceleration signal similar to the audio signal. Then, Conformer is applied to the extracted the logarithmic Mel-spectrogram to learn main local and global frequency features in recognizing the texture of various object materials. Experiments on the Lehrstuhl für Medientechnik (LMT) haptic texture dataset consisting of 60 materials to evaluate the performance of the proposed model showed that the proposed method can effectively recognize the texture of the object surface material better than the existing methods.