• Title/Summary/Keyword: Hanwoo population

Search Result 114, Processing Time 0.026 seconds

Genetic diversity analysis of the line-breeding Hanwoo population using 11 microsatellite markers

  • Shil Jin;Jeong Il Won;Byoungho Park;Sung Woo Kim;Ui Hyung Kim;Sung Sik Kang;Hyun-Jeong Lee;Sung Jin Moon;Myung Sun Park;Hyun Tae Lim;Eun Ho Kim;Ho Chan Kang;Sun Sik Jang;Nam Young Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.321-330
    • /
    • 2023
  • The genetic diversity of three Hanwoo populations was analyzed using 11 microsatellite (MS) markers for the traceability of Hanwoo beef in this study. A total of 1,099 Hanwoo cattle from two populations (694 line-breeding and 405 general Hanwoo) at the Hanwoo Research Institute (HRI) of the National Institute of Animal Science and 1,171 Korean proven bulls (KPNs) were used for the analysis. Specific alleles of four markers (ETH10, INRA23, TGLA122, and TGLA227) were identified only in the line-breeding population, although at a low allele frequency (0.001 - 0.02). The genetic distance (Nei's D) between line-breeding Hanwoo and KPN was the greatest (0.064), whereas general Hanwoo and KPN were relatively close genetically (0.02); the distance between line-breeding and general Hanwoo was found to be 0.054. These results are expected because the HRI has performed closed breeding via selecting its line-breeding sires without utilizing KPN since 2009. Therefore, the line-breeding Hanwoo population of HRI show different genetic diversity from the KPN population, based on the 11 MS markers. The results of this study provide basic data for securing the genetic diversity of Hanwoo cattle and utilizing line-breeding Hanwoo cattle from the HRI.

Genetic characteristics of Korean Jeju Black cattle with high density single nucleotide polymorphisms

  • Alam, M. Zahangir;Lee, Yun-Mi;Son, Hyo-Jung;Hanna, Lauren H.;Riley, David G.;Mannen, Hideyuki;Sasazaki, Shinji;Park, Se Pill;Kim, Jong-Joo
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.789-800
    • /
    • 2021
  • Objective: Conservation and genetic improvement of cattle breeds require information about genetic diversity and population structure of the cattle. In this study, we investigated the genetic diversity and population structure of the three cattle breeds in the Korean peninsula. Methods: Jeju Black, Hanwoo, Holstein cattle in Korea, together with six foreign breeds were examined. Genetic diversity within the cattle breeds was analyzed with minor allele frequency (MAF), observed and expected heterozygosity (HO and HE), inbreeding coefficient (FIS) and past effective population size. Molecular variance and population structure between the nine breeds were analyzed using a model-based clustering method. Genetic distances between breeds were evaluated with Nei's genetic distance and Weir and Cockerham's FST. Results: Our results revealed that Jeju Black cattle had lowest level of heterozygosity (HE = 0.21) among the studied taurine breeds, and an average MAF of 0.16. The level of inbreeding was -0.076 for Jeju Black, while -0.018 to -0.118 for the other breeds. Principle component analysis and neighbor-joining tree showed a clear separation of Jeju Black cattle from other local (Hanwoo and Japanese cattle) and taurine/indicine cattle breeds in evolutionary process, and a distinct pattern of admixture of Jeju Black cattle having no clustering with other studied populations. The FST value between Jeju Black cattle and Hanwoo was 0.106, which was lowest across the pair of breeds ranging from 0.161 to 0.274, indicating some degree of genetic closeness of Jeju Black cattle with Hanwoo. The past effective population size of Jeju Black cattle was very small, i.e. 38 in 13 generation ago, whereas 209 for Hanwoo. Conclusion: This study indicates genetic uniqueness of Jeju Black cattle. However, a small effective population size of Jeju Black cattle indicates the requirement for an implementation of a sustainable breeding policy to increase the population for genetic improvement and future conservation.

Linkage Disequilibrium and Effective Population Size in Hanwoo Korean Cattle

  • Lee, S.H.;Cho, Y.M.;Lim, D.;Kim, H.C.;Choi, B.H.;Park, H.S.;Kim, O.H.;Kim, S.;Kim, T.H.;Yoon, D.;Hong, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1660-1665
    • /
    • 2011
  • This study presents a linkage disequilibrium (LD) analysis and effective population size ($N_e$) for the entire Hanwoo Korean cattle genome, which is the first LD map and effective population size estimate ever calculated for this breed. A panel of 4,525 markers was used in the final LD analysis. The pairwise $r^2$ statistic of SNPs up to 50 Mb apart across the genome was estimated. A mean value of $r^2$ = 0.23 was observed in pairwise distances of <25 kb and dropped to 0.1 at 40 to 60 kb, which is similar to the average intermarker distance used in this study. The proportion of SNPs in useful LD ($r^2{\geq}0.25$) was 20% for the distance of 10 and 20 kb between SNPs. Analyses of past effective population size estimates based on direct estimates of recombination rates from SNP data demonstrated that a decline in effective population size to $N_e$ = 98.1 occurred up to three generations ago.

Genetic evaluation and accuracy analysis of commercial Hanwoo population using genomic data

  • Gwang Hyeon Lee;Yeon Hwa Lee;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.32-37
    • /
    • 2023
  • This study has evaluated the genomic estimated breeding value (GEBV) of the commercial Hanwoo population using the genomic best linear unbiased prediction (GBLUP) method and genomic information. Furthermore, it analyzed the accuracy and realized accuracy of the GEBV. 1,740 heads of the Hanwoo population which were analyzed using a single nucleotide polymorphism (SNP) Chip has selected as the test population. For carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS), the mean GEBVs estimated using the GBLUP method were 3.819, 0.740, -0.248, and 0.041, respectively and the accuracy of each trait was 0.743, 0.728, 0.737, and 0.765, respectively. The accuracy of the breeding value was affected by heritability. The accuracy was estimated to be low in EMA with low heritability and high in MS with high heritability. Realized accuracy values of 0.522, 0.404, 0.444, and 0.539 for CWT, EMA, BFT, and MS, respectively, showing the same pattern as the accuracy value. The results of this study suggest that the breeding value of each individual can be estimated with higher accuracy by estimating the GEBV using the genomic information of 18,499 reference populations. If this method is used and applied to individual selection in a commercial Hanwoo population, more precise and economical individual selection is possible. In addition, continuous verification of the GBLUP model and establishment of a reference population suitable for commercial Hanwoo populations in Korea will enable a more accurate evaluation of individuals.

Evolutionary Analyses of Hanwoo (Korean Cattle)-Specific Single-Nucleotide Polymorphisms and Genes Using Whole-Genome Resequencing Data of a Hanwoo Population

  • Lee, Daehwan;Cho, Minah;Hong, Woon-young;Lim, Dajeong;Kim, Hyung-Chul;Cho, Yong-Min;Jeong, Jin-Young;Choi, Bong-Hwan;Ko, Younhee;Kim, Jaebum
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.692-698
    • /
    • 2016
  • Advances in next generation sequencing (NGS) technologies have enabled population-level studies for many animals to unravel the relationships between genotypic differences and traits of specific populations. The objective of this study was to perform evolutionary analysis of single nucleotide polymorphisms (SNP) in genes of Korean native cattle Hanwoo in comparison to SNP data from four other cattle breeds (Jersey, Simmental, Angus, and Holstein) and four related species (pig, horse, human, and mouse) obtained from public databases through NGS-based resequencing. We analyzed population structures and differentiation levels for the five cattle breeds and estimated species-specific SNPs with their origins and phylogenetic relationships among species. In addition, we identified Hanwoo-specific genes and proteins, and determined distinct changes in protein-protein interactions among five species (cattle, pig, horse, human, mouse) in the STRING network database by additionally considering indirect protein interactions. We found that the Hanwoo population was clearly different from the other four cattle populations. There were Hanwoo-specific genes related to its meat trait. Protein interaction rewiring analysis also confirmed that there were Hanwoo-specific protein-protein interactions that might have contributed to its unique meat quality.

An Integrated Genomic Resource Based on Korean Cattle (Hanwoo) Transcripts

  • Lim, Da-Jeong;Cho, Yong-Min;Lee, Seung-Hwan;Sung, Sam-Sun;Nam, Jung-Rye;Yoon, Du-Hak;Shin, Youn-Hee;Park, Hye-Sun;Kim, Hee-Bal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1399-1404
    • /
    • 2010
  • We have created a Bovine Genome Database, an integrated genomic resource for Bos taurus, by merging bovine data from various databases and our own data. We produced 55,213 Korean cattle (Hanwoo) ESTs from cDNA libraries from three tissues. We concentrated on genomic information based on Hanwoo transcripts and provided user-friendly search interfaces within the Bovine Genome Database. The genome browser supported alignment results for the various types of data: Hanwoo EST, consensus sequence, human gene, and predicted bovine genes. The database also provides transcript data information, gene annotation, genomic location, sequence and tissue distribution. Users can also explore bovine disease genes based on comparative mapping of homologous genes and can conduct searches centered on genes within user-selected quantitative trait loci (QTL) regions. The Bovine Genome Database can be accessed at http://bgd.nabc.go.kr.

Accuracy of genotype imputation based on reference population size and marker density in Hanwoo cattle

  • Lee, DooHo;Kim, Yeongkuk;Chung, Yoonji;Lee, Dongjae;Seo, Dongwon;Choi, Tae Jeong;Lim, Dajeong;Yoon, Duhak;Lee, Seung Hwan
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1232-1246
    • /
    • 2021
  • Recently, the cattle genome sequence has been completed, followed by developing a commercial single nucleotide polymorphism (SNP) chip panel in the animal genome industry. In order to increase statistical power for detecting quantitative trait locus (QTL), a number of animals should be genotyped. However, a high-density chip for many animals would be increasing the genotyping cost. Therefore, statistical inference of genotype imputation (low-density chip to high-density) will be useful in the animal industry. The purpose of this study is to investigate the effect of the reference population size and marker density on the imputation accuracy and to suggest the appropriate number of reference population sets for the imputation in Hanwoo cattle. A total of 3,821 Hanwoo cattle were divided into reference and validation populations. The reference sets consisted of 50k (38,916) marker data and different population sizes (500, 1,000, 1,500, 2,000, and 3,600). The validation sets consisted of four validation sets (Total 889) and the different marker density (5k [5,000], 10k [10,000], and 15k [15,000]). The accuracy of imputation was calculated by direct comparison of the true genotype and the imputed genotype. In conclusion, when the lowest marker density (5k) was used in the validation set, according to the reference population size, the imputation accuracy was 0.793 to 0.929. On the other hand, when the highest marker density (15k), according to the reference population size, the imputation accuracy was 0.904 to 0.967. Moreover, the reference population size should be more than 1,000 to obtain at least 88% imputation accuracy in Hanwoo cattle.

Genetic evaluation for economic traits of commercial Hanwoo population using single-step GBLUP

  • Gwang Hyeon Lee;Khaliunaa Tseveen;Yoon Seok Lee;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.268-274
    • /
    • 2023
  • Background: Recently, the single-step genomic best linear unbiased prediction (ssGBLUP) method, which incorporates not only genomic information but also phenotypic information of pedigree, is under study. In this study, we performed a ssGBLUP analysis on a commercial Hanwoo population using phenotypic, genotypic, and pedigree data. Methods: The test population comprised Hanwoo 1,740 heads raised in four regions of Korea, while the reference population used Hanwoo 18,499 heads raised across the country and two-generation pedigree data. Analysis was performed using genotype data generated by the Hanwoo 50 K SNP beadchip. Results: The mean Genome estimated breeding values (GEBVs) estimated using the ssGBLUP methods for carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS) were 7.348, 1.515, -0.355, and 0.040, respectively, while the accuracy of each trait was 0.749, 0.733, 0.769, and 0.768, respectively. When the correlation analysis between the GEBVs as a result of this study and the actual slaughter performance was confirmed, CWT, EMA, BFT, and MS were reported to be 0.519, 0.435, 0.444, and 0.543, respectively. Conclusions: Our results suggest that the ssGBLUP method enables a more accurate evaluation because it conducts a genetic evaluation of an individual using not only genotype information but also phenotypic information of the pedigree. Individual evaluation using the ssGBLUP method is considered effective for enhancing the genetic ability of farms and enabling accurate and rapid improvements. It is considered that if more pedigree information of reference population is collected for analysis, genetic ability can be evaluated more accurately.

Validation of Single Nucleotide Polymorphisms Associated with Carcass Traits in a Commercial Hanwoo Population

  • Sudrajad, Pita;Sharma, Aditi;Dang, Chang Gwon;Kim, Jong Joo;Kim, Kwan Suk;Lee, Jun Heon;Kim, Sidong;Lee, Seung Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1541-1546
    • /
    • 2016
  • Four carcass traits, namely carcass weight (CW), eye muscle area (EMA), back fat thickness (BF), and marbling score (MS), are the main price decision parameters used for purchasing Hanwoo beef. The development of DNA markers for these carcass traits for use in a beef management system could result in substantial profit for beef producers in Korea. The objective of this study was to validate the association of highly significant single nucleotide polymorphisms (SNPs) identified in a previous genome-wide association study (GWAS) with the four carcass traits in a commercial Hanwoo population. We genotyped 83 SNPs distributed across all 29 autosomes in 867 steers from a Korean Hanwoo feedlot. Six SNPs, namely ARS-BFGL-NGS-22774 (Chr4, Pos:4889229), ARS-BFGL-NGS-100046 (Chr6, Pos:61917424), ARS-BFGL-NGS-39006 (Chr27, Pos:38059196), ARS-BFGL-NGS-18790 (Chr10, Pos:26489109), ARS-BFGL-NGS-43879 (Chr9, Pos:39964297), and BTB-00775794 (Chr20, Pos:20476265), were found to be associated with CW, EMA, BF, and MS. The ARS-BFGL-NGS-22774, BTB-00775794, and ARS-BFGL-NGS-39006 markers accounted for 1.80%, 1.72%, and 1.35% (p<0.01), respectively, of the phenotypic variance in the commercial Hanwoo population. Many genes located in close proximity to the significant SNPs identified in this study were previously reported to have roles in carcass traits. The results of this study could be useful for marker-assisted selection programs.

Genetic variants and signatures of selective sweep of Hanwoo population (Korean native cattle)

  • Lee, Taeheon;Cho, Seoae;Seo, Kang Seok;Chang, Jongsoo;Kim, Heebal;Yoon, Duhak
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.346-351
    • /
    • 2013
  • Although there have been many studies of native Korean cattle, Hanwoo, there have been no selective sweep studies in these animals. This study was performed to characterize genetic variation and identify selective signatures. We sequenced the genomes of 12 cattle, and identified 15125420 SNPs, 1768114 INDELs, and 3445 CNVs. The SNPs, INDELs, and CNVs were similarly distributed throughout the genome, and highly variable regions were shown to contain the BoLA family and GPR180, which are related to adaptive immunity. We also identified the domestication footprints of the Hanwoo population by searching for selective sweep signatures, which revealed the RCN2 gene related to BPV resistance. The results of this study may contribute to genetic improvement of the Hanwoo population in Korea.