• Title/Summary/Keyword: Handwritten numeral recognition

Search Result 48, Processing Time 0.027 seconds

Recognition of Unconstrained Handwritten Numerals using Chaotic Neural Network (카오틱 신경망을 이용한 서체 숫자 인식)

  • 조재홍;성정원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1301-1304
    • /
    • 1998
  • Several neural networks have been successfully used to classify complex patterns such as handwritten numerals or words. This paper describes the discrimination of totally unconstrained handwritten numerals using the proposed chaotic neural network (CNN) to improve the recognition rate. The recognition system in the paper consists of the preprocessing stage to extract features using Kirsch mask and the classification stage to recognize numerals using the CNN. In order to evaluate the performance of the proposed network, we performed the recognition with unconstrained handwritten numeral database of Concordia university, Canada. Experimental results show that the CNN based recognizer performs higher recognition rate than other neural network-based methods reported using same database.

  • PDF

Recognition of Unconstrained Handwritten Digits Using Raised Cosine RBF Neural Networks (Raised Cosine RBF 신경망을 이용한 무제약 필기체 숫자 인식)

  • 박준근;김상희;박원우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • In this paper, we presented a new approach to the recognition of unconstrained handwritten numerals using an improved RBF(Radial Basis Function) Neural Networks. The RBF Neural Networks used Raised Cosine as a basis function to improve discrimination and reduce processing time. The performance of Raised Cosine RBF Neural Networks classifier was evaluated using totally unconstrained handwritten numeral database of Concordia University, Montreal, Canada, and the experimental results showed the recognition rate of 98.05%.

  • PDF

Unconstrained Numeral Recognition Using Dithering and Multiple Modular MLPs (디더링과 모듈 구조의 다중 MLP를 이용한 무제약 필기체 숫자 인식)

  • 임길택;남윤석;진성일
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.456-459
    • /
    • 1999
  • In this paper, we propose a method of unconstrained handwritten numeral recognition using image dithering and multiple modular MLPs. The set of sample numeral patterns is subdivided into clusters which are extended by their radius. On each extended cluster, we constructed MLPs network as the expert recognizer of corresponding cluster. The gating network is also trained by an MLPs to weigh the outputs of expert MLPs. In training and test phase of the recognizer, we utilize the multiple dithered numeral images and the combination of the outputs for corresponding dithered images. Experimental results show that our recognition method works very well.

  • PDF

Directional Feature Extraction of Handwritten Numerals using Local min/max Operations (Local min/max 연산을 이용한 필기체 숫자의 방향특징 추출)

  • Jung, Soon-Won;Park, Joong-Jo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, we propose a directional feature extraction method for off-line handwritten numerals by using the morphological operations. Direction features are obtained from four directional line images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral lines. Conventional method for extracting directional features uses Kirsch masks which generate edge-shaped double line images for each direction, whereas our method uses directional erosion operations and generate single line images for each direction. To apply these directional erosion operations to the numeral image, preprocessing steps such as thinning and dilation are required, but resultant directional lines are more similar to numeral lines themselves. Our four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. For obtaining the higher recognition rates of the handwrittern numerals, we use the multiple feature which is comprised of our proposed feature and the conventional features of a kirsch directional feature and a concavity feature. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the CENPARMI numeral database of Concordia University, we have achieved a recognition rate of 98.35%.

  • PDF

Handwritten Numeral Recognition Using Karhunen-Loeve Transform Based Subspace Classifier and Combined Multiple Novelty Classifiers (Karhunen-Loeve 변환 기반의 부분공간 인식기와 결합된 다중 노벨티 인식기를 이용한 필기체 숫자 인식)

  • 임길택;진성일
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.88-98
    • /
    • 1998
  • Subspace classifier is a popular pattern recognition method based on Karhunen-Loeve transform. This classifier describes a high dimensional pattern by using a reduced dimensional subspace. Because of the loss of information induced by dimensionality reduction, however, a subspace classifier sometimes shows unsatisfactory recognition performance to the patterns having quite similar principal components each other. In this paper, we propose the use of multiple novelty neural network classifiers constructed on novelty vectors to adopt minor components usually ignored and present a method of improving recognition performance through combining those with the subspace classifier. We develop the proposed classifier on handwritten numeral database and analyze its properties. Our proposed classifier shows better recognition performance compared with other classifiers, though it requires more weight links.

  • PDF

Design of a Fuzzy Classifier by Repetitive Analyses of Multifeatures (다중 특징의 반복적 분석에 의한 퍼지 분류기의 설계)

  • 신대정;나승유
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.14-24
    • /
    • 1996
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation ation padptu sing genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusior~ or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to three examples of the classification of iris data, the discrimination of thyroid gland cancer cells and the recognition of confusing handwritten and printed numerals. In the recognition of confusing handwritten and printed numerals, each sample numeral is classified into one of the groups which are divided according to the sample structure. The fuzzy classifier proposed in this paper has recognition rates of 98. 67% for iris data, 98.25% for thyroid gland cancer cells and 96.3% for confusing handwritten and printed numeral!;.

  • PDF

Handwritten Digit Recognition with Softcomputing Techniques

  • Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.707-712
    • /
    • 1998
  • This paper presents several softcomputing techniques such as neural networks, fuzzy logic and genetic algorithms : Neural networks as brain metaphor provide fundamental structure, fuzzy logic gives a possibility to utilize top-down knowledge from designer, and genetic algorithms as evolution metaphor determine several system parameters with the process of bottom up development. With these techniques, we develop a pattern recognizer which consists of multiple neural networks aggregated by fuzzy integral in which genetic algorithms determine the fuzzy density values. The experimental results with the problem of recognizing totally unconstrained handwritten numeral show that the performance of the proposed method is superior to that of conventional methods.

  • PDF

A Study of Construction of Character Image Data for Recognition Handwritten Text (필기체 문자 인식을 위한 문자 영상 데이터 구축에 관한 연구)

  • Lee, H.R.;Ko, K.C.;Lee, M.R.
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.63-67
    • /
    • 2000
  • In order to develop a character recognition system, it is an essential preceding work that gathers an image data of the standard. On this purpose a data of the digitized images of a handwritten characters was collected. The types of a gathered image data are Korean character, Chiness character, Numeral, English character, Special character, and so on. This paper deals with a handwritten character image data base, and the image data base different from the general storage structure of a lame capacity multimedia was designed and builded.

  • PDF

A Study on the Implementation Methods of the MLP Recognizer for Handwritten Numerals and Non-Numerals (필기체 숫자와 비숫자의 인식을 위한 MLP 인식기의 구현 방법에 관한 연구)

  • Lim, Kil-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1119-1122
    • /
    • 2005
  • This paper describes the implementation methods of the MLP (mulilayer perteptrons) recognizers for numerals and non-nummerals. The MLP has known to be a very efficient classifier to recognize handwritten numerals in terms of recognition accuracy, speed, and memory requirements. The MLP in the previous researches, however, focuses on the only numeral inputs and does not pay attention to non-numeral inputs with respect to recognition accuracy, rejection rates, and other characteristics. In this paper, we present some implementation methods of the MLP in the environments that numeral and non-numerals are mixed. The MLP had been developed by three methods, and investigated with three error types introduced. The experiments had been conducted on a total of about 63,000 numerals and non-numerals. The promising method to recognize numeral and non-numerals is described in terms of the three error types.

  • PDF

Performance Comparison of Various Features for Off-line Handwritten Numerals Recognition and Suggestions for Improving Recognition Rate (오프라인 필기체 슷자 인식을 위한 다양한 특징들의 성능 비교 및 인식률 개선 방안)

  • Park, Chang-Sun;Kim, Du-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.915-925
    • /
    • 1996
  • In this paper, in order to find effective features which can handle variations in off-line handwritten numerals, we performed a comparative study on various sets of features. Results of experimental performance comparison shows that 4- directional features using contours and features which combined cross distance, cross, mesh and projection features are very effective for off-line handwritten numerals recognition in terms of recognition rates and recognition time. And in order to surmount limitation of recognition rate by a single neural network. we proposed a modularized neural network using majority voting and reliability factor with complex feature that mix effective features together. In order to verify the performance of the proposed method, the handwritten numeral databases of Concordia University of Canada and Dong-A University of Korea are used in the experiments. With the database of Concordia University, the recognition rate of 97.1%, the rejection rate of 1.5%, the error rate of 1.4% and the reliability of 98.5% are obtained ; and with the database of Dong-A University, there cognition rate of 98%, the rejection rate of 1.2%, the error rate of 0.8%, the reliability o99.1% are obtained.

  • PDF