• Title/Summary/Keyword: Handling Missing Values

Search Result 19, Processing Time 0.019 seconds

HANDLING MISSING VALUES IN FUZZY c-MEANS

  • Miyamoto, Sadaaki;Takata, Osamu;Unayahara, Kazutaka
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.139-142
    • /
    • 1998
  • Missing values in data for fuzzy c-menas clustering is discussed. Two basic methods of fuzzy c-means, i.e., the standard fuzzy c-means and the entropy method are considered and three options of handling missing values are proposed, among which one is to define a new distance between data with missing values, second is to alter a weight in the new distance, and the third is to fill the missing values by an appropriate numbers. Experimental Results are shown.

  • PDF

Exploiting Patterns for Handling Incomplete Coevolving EEG Time Series

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • The electroencephalogram (EEG) time series is a measure of electrical activity received from multiple electrodes placed on the scalp of a human brain. It provides a direct measurement for characterizing the dynamic aspects of brain activities. These EEG signals are formed from a series of spatial and temporal data with multiple dimensions. Missing data could occur due to fault electrodes. These missing data can cause distortion, repudiation, and further, reduce the effectiveness of analyzing algorithms. Current methodologies for EEG analysis require a complete set of EEG data matrix as input. Therefore, an accurate and reliable imputation approach for missing values is necessary to avoid incomplete data sets for analyses and further improve the usage of performance techniques. This research proposes a new method to automatically recover random consecutive missing data from real world EEG data based on Linear Dynamical System. The proposed method aims to capture the optimal patterns based on two main characteristics in the coevolving EEG time series: namely, (i) dynamics via discovering temporal evolving behaviors, and (ii) correlations by identifying the relationships between multiple brain signals. From these exploits, the proposed method successfully identifies a few hidden variables and discovers their dynamics to impute missing values. The proposed method offers a robust and scalable approach with linear computation time over the size of sequences. A comparative study has been performed to assess the effectiveness of the proposed method against interpolation and missing values via Singular Value Decomposition (MSVD). The experimental simulations demonstrate that the proposed method provides better reconstruction performance up to 49% and 67% improvements over MSVD and interpolation approaches, respectively.

A comparison of imputation methods using machine learning models

  • Heajung Suh;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.331-341
    • /
    • 2023
  • Handling missing values in data analysis is essential in constructing a good prediction model. The easiest way to handle missing values is to use complete case data, but this can lead to information loss within the data and invalid conclusions in data analysis. Imputation is a technique that replaces missing data with alternative values obtained from information in a dataset. Conventional imputation methods include K-nearest-neighbor imputation and multiple imputations. Recent methods include missForest, missRanger, and mixgb ,all which use machine learning algorithms. This paper compares the imputation techniques for datasets with mixed datatypes in various situations, such as data size, missing ratios, and missing mechanisms. To evaluate the performance of each method in mixed datasets, we propose a new imputation performance measure (IPM) that is a unified measurement applicable to numerical and categorical variables. We believe this metric can help find the best imputation method. Finally, we summarize the comparison results with imputation performances and computational times.

Handling Incomplete Data Problem in Collaborative Filtering System

  • Noh, Hyun-ju;Kwak, Min-jung;Han, In-goo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.105-110
    • /
    • 2003
  • Collaborative filtering is one of the methodologies that are most widely used for recommendation system. It is based on a data matrix of each customer's preferences of products. There could be a lot of missing values in such preference. data matrix. This incomplete data is one of the reasons to deteriorate the accuracy of recommendation system. Multiple imputation method imputes m values for each missing value. It overcomes flaws of single imputation approaches through considering the uncertainty of missing values.. The objective of this paper is to suggest multiple imputation-based collaborative filtering approach for recommendation system to improve the accuracy in prediction performance. The experimental works show that the proposed approach provides better performance than the traditional Collaborative filtering approach, especially in case that there are a lot of missing values in dataset used for recommendation system.

  • PDF

Handling Incomplete Data Problem in Collaborative Filtering System

  • Noh, Hyun-Ju;Kwak, Min-Jung;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.2
    • /
    • pp.51-63
    • /
    • 2003
  • Collaborative filtering is one of the methodologies that are most widely used for recommendation system. It is based on a data matrix of each customer's preferences of products. There could be a lot of missing values in such preference data matrix. This incomplete data is one of the reasons to deteriorate the accuracy of recommendation system. There are several treatments to deal with the incomplete data problem such as case deletion and single imputation. Those approaches are simple and easy to implement but they may provide biased results. Multiple imputation method imputes m values for each missing value. It overcomes flaws of single imputation approaches through considering the uncertainty of missing values. The objective of this paper is to suggest multiple imputation-based collaborative filtering approach for recommendation system to improve the accuracy in prediction performance. The experimental works show that the proposed approach provides better performance than the traditional Collaborative filtering approach, especially in case that there are a lot of missing values in dataset used for recommendation system.

  • PDF

Association Rule Mining Algorithm and Analysis of Missing Values

  • Lee, Jae-Wan;Bobby D. Gerardo;Kim, Gui-Tae;Jeong, Jin-Seob
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.150-156
    • /
    • 2003
  • This paper explored the use of an algorithm for the data mining and method in handling missing data which had generated enhanced association patterns observed using the data illustrated here. The evaluations showed that more association patterns are generated in the second analysis which suggests more meaningful rules than in the first situation. It showed that the model offer more precise and important association rules that is more valuable when applied for business decision making. With the discovery of accurate association rules or business patterns, strategies could be efficiently planned out and implemented to improve marketing schemes. This investigation gives rise to a number of interesting issues that could be explored further like the effect of outliers and missing data for detecting fraud and devious database entries.

A Naive Multiple Imputation Method for Ignorable Nonresponse

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.399-411
    • /
    • 2004
  • A common method of handling nonresponse in sample survey is to delete the cases, which may result in a substantial loss of cases. Thus in certain situation, it is of interest to create a complete set of sample values. In this case, a popular approach is to impute the missing values in the sample by the mean or the median of responders. The difficulty with this method which just replaces each missing value with a single imputed value is that inferences based on the completed dataset underestimate the precision of the inferential procedure. Various suggestions have been made to overcome the difficulty but they might not be appropriate for public-use files where the user has only limited information for about the reasons for nonresponse. In this note, a multiple imputation method is considered to create complete dataset which might be used for all possible inferential procedures without misleading or underestimating the precision.

Application of NORM to the Multiple Imputation for Multivariate Missing Data

  • Kim, Hyun-Jeong;Moon, Sung-Ho;Shin, Jae-Kyoung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.105-113
    • /
    • 2002
  • The statistical analysis of incomplete data sometimes requires handling of incomplete observations. Towards this end, each case with some missing values generally should be deleted, namely, resulting in only use of non-missing cases. EM algorithm(Dempster et al., 1977) which involves prediction and estimation steps is a general method among others. In this article, we use the free software NORM developed for multiple imputation, which uses DA(Data Augmentation) algorithm in its imputation, and evaluate its efficiency through a numerical example.

  • PDF

A Classifier Capable of Handling Incomplete Data Set (불완전한 데이터를 처리할수 있는 분류기)

  • Lee, Jong-Chan;Lee, Won-Don
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.53-62
    • /
    • 2010
  • This paper introduces a classification algorithm which can be applied to a learning problem with incomplete data sets, missing variable values or a class value. This algorithm uses a data expansion method which utilizes weighted values and probability techniques. It operates by extending a classifier which are considered to be in the optimal projection plane based on Fisher's formula. To do this, some equations are derived from the procedure to be applied to the data expansion. To evaluate the performance of the proposed algorithm, results of different measurements are iteratively compared by choosing one variable in the data set and then modifying the rate of missing and non-missing values in this selected variable. And objective evaluation of data sets can be achieved by comparing, the result of a data set with non-missing variable with that of C4.5 which is a known knowledge acquisition tool in machine learning.

Incomplete data handling technique using decision trees (결정트리를 이용하는 불완전한 데이터 처리기법)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.39-45
    • /
    • 2021
  • This paper discusses how to handle incomplete data including missing values. Optimally processing the missing value means obtaining an estimate that is the closest to the original value from the information contained in the training data, and replacing the missing value with this value. The way to achieve this is to use a decision tree that is completed in the process of classifying information by the classifier. In other words, this decision tree is obtained in the process of learning by inputting only complete information that does not include loss values among all training data into the C4.5 classifier. The nodes of this decision tree have classification variable information, and the higher node closer to the root contains more information, and the leaf node forms a classification region through a path from the root. In addition, the average of classified data events is recorded in each region. Events including the missing value are input to this decision tree, and the region closest to the event is searched through a traversal process according to the information of each node. The average value recorded in this area is regarded as an estimate of the missing value, and the compensation process is completed.