• Title/Summary/Keyword: Hand-motion recognition

Search Result 145, Processing Time 0.021 seconds

Volume Control using Gesture Recognition System

  • Shreyansh Gupta;Samyak Barnwal
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.161-170
    • /
    • 2024
  • With the technological advances, the humans have made so much progress in the ease of living and now incorporating the use of sight, motion, sound, speech etc. for various application and software controls. In this paper, we have explored the project in which gestures plays a very significant role in the project. The topic of gesture control which has been researched a lot and is just getting evolved every day. We see the usage of computer vision in this project. The main objective that we achieved in this project is controlling the computer settings with hand gestures using computer vision. In this project we are creating a module which acts a volume controlling program in which we use hand gestures to control the computer system volume. We have included the use of OpenCV. This module is used in the implementation of hand gestures in computer controls. The module in execution uses the web camera of the computer to record the images or videos and then processes them to find the needed information and then based on the input, performs the action on the volume settings if that computer. The program has the functionality of increasing and decreasing the volume of the computer. The setup needed for the program execution is a web camera to record the input images and videos which will be given by the user. The program will perform gesture recognition with the help of OpenCV and python and its libraries and them it will recognize or identify the specified human gestures and use them to perform or carry out the changes in the device setting. The objective is to adjust the volume of a computer device without the need for physical interaction using a mouse or keyboard. OpenCV, a widely utilized tool for image processing and computer vision applications in this domain, enjoys extensive popularity. The OpenCV community consists of over 47,000 individuals, and as of a survey conducted in 2020, the estimated number of downloads exceeds 18 million.

An Implementation of Dynamic Gesture Recognizer Based on WPS and Data Glove (WPS와 장갑 장치 기반의 동적 제스처 인식기의 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.561-568
    • /
    • 2006
  • WPS(Wearable Personal Station) for next generation PC can define as a core terminal of 'Ubiquitous Computing' that include information processing and network function and overcome spatial limitation in acquisition of new information. As a way to acquire significant dynamic gesture data of user from haptic devices, traditional gesture recognizer based on desktop-PC using wire communication module has several restrictions such as conditionality on space, complexity between transmission mediums(cable elements), limitation of motion and incommodiousness on use. Accordingly, in this paper, in order to overcome these problems, we implement hand gesture recognition system using fuzzy algorithm and neural network for Post PC(the embedded-ubiquitous environment using blue-tooth module and WPS). Also, we propose most efficient and reasonable hand gesture recognition interface for Post PC through evaluation and analysis of performance about each gesture recognition system. The proposed gesture recognition system consists of three modules: 1) gesture input module that processes motion of dynamic hand to input data 2) Relational Database Management System(hereafter, RDBMS) module to segment significant gestures from input data and 3) 2 each different recognition modulo: fuzzy max-min and neural network recognition module to recognize significant gesture of continuous / dynamic gestures. Experimental result shows the average recognition rate of 98.8% in fuzzy min-nin module and 96.7% in neural network recognition module about significantly dynamic gestures.

(A Comparison of Gesture Recognition Performance Based on Feature Spaces of Angle, Velocity and Location in HMM Model) (HMM인식기 상에서 방향, 속도 및 공간 특징량에 따른 제스처 인식 성능 비교)

  • 윤호섭;양현승
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.430-443
    • /
    • 2003
  • The objective of this paper is to evaluate most useful feature vector space using the angle, velocity and location features from gesture trajectory which extracted hand regions from consecutive input images and track them by connecting their positions. For this purpose, the gesture tracking algorithm using color and motion information is developed. The recognition module is a HMM model to adaptive time various data. The proposed algorithm was applied to a database containing 4,800 alphabetical handwriting gestures of 20 persons who was asked to draw his/her handwriting gestures five times for each of the 48 characters.

Smart Wrist Band Considering Wrist Skin Curvature Variation for Real-Time Hand Gesture Recognition (실시간 손 제스처 인식을 위하여 손목 피부 표면의 높낮이 변화를 고려한 스마트 손목 밴드)

  • Yun Kang;Joono Cheong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.18-28
    • /
    • 2023
  • This study introduces a smart wrist band system with pressure measurements using wrist skin curvature variation due to finger motion. It is easy to wear and take off without pre-adaptation or surgery to use. By analyzing the depth variation of wrist skin curvature during each finger motion, we elaborated the most suitable location of each Force Sensitive Resistor (FSR) to be attached in the wristband with anatomical consideration. A 3D depth camera was used to investigate distinctive wrist locations, responsible for the anatomically de-coupled thumb, index, and middle finger, where the variations of wrist skin curvature appear independently. Then sensors within the wristband were attached correspondingly to measure the pressure change of those points and eventually the finger motion. The smart wrist band was validated for its practicality through two demonstrative applications, i.e., one for a real-time control of prosthetic robot hands and the other for natural human-computer interfacing. And hopefully other futuristic human-related applications would be benefited from the proposed smart wrist band system.

Inexpensive Visual Motion Data Glove for Human-Computer Interface Via Hand Gesture Recognition (손 동작 인식을 통한 인간 - 컴퓨터 인터페이스용 저가형 비주얼 모션 데이터 글러브)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.341-346
    • /
    • 2009
  • The motion data glove is a representative human-computer interaction tool that inputs human hand gestures to computers by measuring their motions. The motion data glove is essential equipment used for new computer technologiesincluding home automation, virtual reality, biometrics, motion capture. For its popular usage, this paper attempts to develop an inexpensive visual.type motion data glove that can be used without any special equipment. The proposed approach has the special feature; it can be developed as a low-cost one becauseof not using high-cost motion-sensing fibers that were used in the conventional approaches. That makes its easy production and popular use possible. This approach adopts a visual method that is obtained by improving conventional optic motion capture technology, instead of mechanical method using motion-sensing fibers. Compared to conventional visual methods, the proposed method has the following advantages and originalities Firstly, conventional visual methods use many cameras and equipments to reconstruct 3D pose with eliminating occlusions But the proposed method adopts a mono vision approachthat makes simple and low cost equipments possible. Secondly, conventional mono vision methods have difficulty in reconstructing 3D pose of occluded parts in images because they have weak points about occlusions. But the proposed approach can reconstruct occluded parts in images by using originally designed thin-bar-shaped optic indicators. Thirdly, many cases of conventional methods use nonlinear numerical computation image analysis algorithm, so they have inconvenience about their initialization and computation times. But the proposed method improves these inconveniences by using a closed-form image analysis algorithm that is obtained from original formulation. Fourthly, many cases of conventional closed-form algorithms use approximations in their formulations processes, so they have disadvantages of low accuracy and confined applications due to singularities. But the proposed method improves these disadvantages by original formulation techniques where a closed-form algorithm is derived by using exponential-form twist coordinates, instead of using approximations or local parameterizations such as Euler angels.

Automatic Coarticulation Detection for Continuous Sign Language Recognition (연속된 수화 인식을 위한 자동화된 Coarticulation 검출)

  • Yang, Hee-Deok;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.82-91
    • /
    • 2009
  • Sign language spotting is the task of detecting and recognizing the signs in a signed utterance. The difficulty of sign language spotting is that the occurrences of signs vary in both motion and shape. Moreover, the signs appear within a continuous gesture stream, interspersed with transitional movements between signs in a vocabulary and non-sign patterns(which include out-of-vocabulary signs, epentheses, and other movements that do not correspond to signs). In this paper, a novel method for designing a threshold model in a conditional random field(CRF) model is proposed. The proposed model performs an adaptive threshold for distinguishing between signs in the vocabulary and non-sign patterns. A hand appearance-based sign verification method, a short-sign detector, and a subsign reasoning method are included to further improve sign language spotting accuracy. Experimental results show that the proposed method can detect signs from continuous data with an 88% spotting rate and can recognize signs from isolated data with a 94% recognition rate, versus 74% and 90% respectively for CRFs without a threshold model, short-sign detector, subsign reasoning, and hand appearance-based sign verification.

Developing Interactive Game Contents using 3D Human Pose Recognition (3차원 인체 포즈 인식을 이용한 상호작용 게임 콘텐츠 개발)

  • Choi, Yoon-Ji;Park, Jae-Wan;Song, Dae-Hyeon;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.619-628
    • /
    • 2011
  • Normally vision-based 3D human pose recognition technology is used to method for convey human gesture in HCI(Human-Computer Interaction). 2D pose model based recognition method recognizes simple 2D human pose in particular environment. On the other hand, 3D pose model which describes 3D human body skeletal structure can recognize more complex 3D pose than 2D pose model in because it can use joint angle and shape information of body part. In this paper, we describe a development of interactive game contents using pose recognition interface that using 3D human body joint information. Our system was proposed for the purpose that users can control the game contents with body motion without any additional equipment. Poses are recognized comparing current input pose and predefined pose template which is consist of 14 human body joint 3D information. We implement the game contents with the our pose recognition system and make sure about the efficiency of our proposed system. In the future, we will improve the system that can be recognized poses in various environments robustly.

Implementation of User Gesture Recognition System for manipulating a Floating Hologram Character (플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템 구현)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • Floating holograms are technologies that provide rich 3D stereoscopic images in a wide space such as advertisement, concert. In addition, It is possible to reduce the 3D glasses inconvenience, eye strain, and space distortion, and to enjoy 3D images with excellent realism and existence. Therefore, this paper implements a user gesture recognition system for manipulating a floating hologram characters that can be used in a small space devices. The proposed method detects face region using haar feature-based cascade classifier, and recognizes the user gestures using a user gesture-occurred position information that is acquired from the gesture difference image in real time. And Each classified gesture information is mapped to the character motion in floating hologram for manipulating a character action. In order to evaluate the performance of the proposed user gesture recognition system for manipulating a floating hologram character, we make the floating hologram display devise, and measures the recognition rate of each gesture repeatedly that includes body shaking, walking, hand shaking, and jumping. As a results, the average recognition rate was 88%.

Development of an IMU-based Wearable Ankle Device for Military Motion Recognition (군사 동작 인식을 위한 IMU 기반 발목형 웨어러블 디바이스 개발)

  • Byeongjun Jang;Jeonghoun Cho;Dohyeon Kim;Kyeong-Won Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.23-34
    • /
    • 2023
  • Wearable technology for military applications has received considerable attention as a means of personal status check and monitoring. Among many, an implementation to recognize specific motion states of a human is promising in that allows active management of troops by immediately collecting the operational status and movement status of individual soldiers. In this study, as an extension of military wearable application research, a new ankle wearable device is proposed that can glean the information of a soldier on the battlefield on which action he/she takes in which environment. Presuming a virtual situation, the soldier's upper limbs are easily exposed to uncertainties about circumstances. Therefore, a sensing module is attached to the ankle of the soldier that may always interact with the ground. The obtained data comprises 3-axis accelerations and 3-axis rotational velocities, which cannot be interpreted by hand-made algorithms. In this study, to discern the behavioral characteristics of a human using these dynamic data, a data-driven model is introduced; four features extracted from sliced data (minimum, maximum, mean, and standard deviation) are utilized as an input of the model to learn and classify eight primary military movements (Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, and High Crawl). As a result, the proposed device could recognize a movement status of a solider with 95.16% accuracy in an arbitrary test situation. This research is meaningful since an effective way of motion recognition has been introduced that can be furtherly extended to various military applications by incorporating wearable technology and artificial intelligence.

The Modified Block Matching Algorithm for a Hand Tracking of an HCI system (HCI 시스템의 손 추적을 위한 수정 블록 정합 알고리즘)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.4 no.4
    • /
    • pp.9-14
    • /
    • 2003
  • A GUI (graphical user interface) has been a dominant platform for HCI (human computer interaction). A GUI - based interaction has made computers simpler and easier to use. The GUI - based interaction, however, does not easily support the range of interaction necessary to meet users' needs that are natural. intuitive, and adaptive. In this paper, the modified BMA (block matching algorithm) is proposed to track a hand in a sequence of an image and to recognize it in each video frame in order to replace a mouse with a pointing device for a virtual reality. The HCI system with 30 frames per second is realized in this paper. The modified BMA is proposed to estimate a position of the hand and segmentation with an orientation of motion and a color distribution of the hand region for real - time processing. The experimental result shows that the modified BMA with the YCbCr (luminance Y, component blue, component red) color coordinate guarantees the real - time processing and the recognition rate. The hand tracking by the modified BMA can be applied to a virtual reclity or a game or an HCI system for the disable.

  • PDF