• Title/Summary/Keyword: Hand segmentation

Search Result 119, Processing Time 0.019 seconds

Hand Segmentation Using Depth Information and Adaptive Threshold by Histogram Analysis with color Clustering

  • Fayya, Rabia;Rhee, Eun Joo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.547-555
    • /
    • 2014
  • This paper presents a method for hand segmentation using depth information, and adaptive threshold by means of histogram analysis and color clustering in HSV color model. We consider hand area as a nearer object to the camera than background on depth information. And the threshold of hand color is adaptively determined by clustering using the matching of color values on the input image with one of the regions of hue histogram. Experimental results demonstrate 95% accuracy rate. Thus, we confirmed that the proposed method is effective for hand segmentation in variations of hand color, scale, rotation, pose, different lightning conditions and any colored background.

A Memory-efficient Hand Segmentation Architecture for Hand Gesture Recognition in Low-power Mobile Devices

  • Choi, Sungpill;Park, Seongwook;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.473-482
    • /
    • 2017
  • Hand gesture recognition is regarded as new Human Computer Interaction (HCI) technologies for the next generation of mobile devices. Previous hand gesture implementation requires a large memory and computation power for hand segmentation, which fails to give real-time interaction with mobile devices to users. Therefore, in this paper, we presents a low latency and memory-efficient hand segmentation architecture for natural hand gesture recognition. To obtain both high memory-efficiency and low latency, we propose a streaming hand contour tracing unit and a fast contour filling unit. As a result, it achieves 7.14 ms latency with only 34.8 KB on-chip memory, which are 1.65 times less latency and 1.68 times less on-chip memory, respectively, compare to the best-in-class.

A study on hand gesture recognition using 3D hand feature (3차원 손 특징을 이용한 손 동작 인식에 관한 연구)

  • Bae Cheol-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.674-679
    • /
    • 2006
  • In this paper a gesture recognition system using 3D feature data is described. The system relies on a novel 3D sensor that generates a dense range mage of the scene. The main novelty of the proposed system, with respect to other 3D gesture recognition techniques, is the capability for robust recognition of complex hand postures such as those encountered in sign language alphabets. This is achieved by explicitly employing 3D hand features. Moreover, the proposed approach does not rely on colour information, and guarantees robust segmentation of the hand under various illumination conditions, and content of the scene. Several novel 3D image analysis algorithms are presented covering the complete processing chain: 3D image acquisition, arm segmentation, hand -forearm segmentation, hand pose estimation, 3D feature extraction, and gesture classification. The proposed system is tested in an application scenario involving the recognition of sign-language postures.

An Illumination and Background-Robust Hand Image Segmentation Method Based on the Dynamic Threshold Values (조명과 배경에 강인한 동적 임계값 기반 손 영상 분할 기법)

  • Na, Min-Young;Kim, Hyun-Jung;Kim, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.607-613
    • /
    • 2011
  • In this paper, we propose a hand image segmentation method using the dynamic threshold values on input images with various lighting and background attributes. First, a moving hand silhouette is extracted using the camera input difference images, Next, based on the R,G,B histogram analysis of the extracted hand silhouette area, the threshold interval for each R, G, and B is calculated on run-time. Finally, the hand area is segmented using the thresholding and then a morphology operation, a connected component analysis and a flood-fill operation are performed for the noise removal. Experimental results on various input images showed that our hand segmentation method provides high level of accuracy and relatively fast stable results without the need of the fixed threshold values. Proposed methods can be used in the user interface of mixed reality applications.

Region-growing based Hand Segmentation Algorithm using Skin Color and Depth Information (피부색 및 깊이정보를 이용한 영역채움 기반 손 분리 기법)

  • Seo, Jonghoon;Chae, Seungho;Shim, Jinwook;Kim, Hayoung;Han, Tack-Don
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1031-1043
    • /
    • 2013
  • Extracting hand region from images is the first part in the process to recognize hand posture and gesture interaction. Therefore, a good segmenting method is important because it determines the overall performance of hand recognition systems. Conventional hand segmentation researches were prone to changing illumination conditions or limited to the ability to detect multiple people. In this paper, we propose a robust technique based on the fusion of skin-color data and depth information for hand segmentation process. The proposed algorithm uses skin-color data to localize accurate seed location for region-growing from a complicated background. Based on the seed location, our algorithm adjusts each detected blob to fill up the hole region. A region-growing algorithm is applied to the adjusted blob boundary at the detected depth image to obtain a robust hand region against illumination effects. Also, the resulting hand region is used to train our skin-model adaptively which further reduces the effects of changing illumination. We conducted experiments to compare our results with conventional techniques which validates the robustness of the proposed algorithm and in addition we show our method works well even in a counter light condition.

Real-Time Two Hands Tracking System

  • Liu, Nianjun;Lovell, Brian C.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1491-1494
    • /
    • 2002
  • The paper introduces a novel system of two hands real-time tracking based on the unrestricted hand skin segmentation by multi color systems. After corer-based segmentation and pre-processing operation, a label set of regions is created to locate the two hands automatically. By the normalization, template matching is used to find out the left or right hand. An improved fast self-adaptive tracking algorithm is applied and Canny filter is used for hand detection.

  • PDF

Hand Region Segmentation and Tracking Based on Hue Image (Hue 영상을 기반한 손 영역 검출 및 추적)

  • 권화중;이준호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1003-1006
    • /
    • 1999
  • Hand segmentation and tracking is essential to the development of a hand gesture recognition system. This research features segementation and tracking of hand regions based the hue component of color. We propose a method that employs HSI color model, and segments and tracks hand regions using the hue component of color alone. In order to track the segmented hand regions, we only apply Kalman filter to a region of interest represented by a rectangle region. Initial experimental results show that the system accurately segments and tracks hand regions although it only uses the hue compoent of color. The system yields near real time throghput of 8 frames per second on a Pentium II 233MHz PC.

  • PDF

Palm Area Detection by Maximum Hand Width (손 최장너비 기반 손바닥 영역 검출)

  • Choi, Eun Chang;Kim, Jun Yeon;Lee, Jae Won;Lim, Jong Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.398-405
    • /
    • 2018
  • In the HCI, hand gesture recognition is attracting attention as a method for interaction and information exchange between users and devices along with the development of IT devices. In hand gesture recognition through image processing, palm region detection is a key process contributing to improvement of processing speed and recognition rate. In this paper, we propose a new method for image segmentation between the hand and wrist for palm area detection. The anatomical characteristics of the hand are used to calculate the distance between the iliac bones of the thumb and little finger, which have the widest width, by the horizontal projection histogram of the hand image, and then the palm area is detected by drawing a circle having the width as the diameter. In order to verify the superiority of this method, multiple stage template matching is used to compare and evaluate recognition performance against the four conventional methods for 10 hand gestures. Note that the literatures to offer palm area detection performance evaluation are few although there are many studies on hand gesture recognition.

Survey on Deep Learning-based Panoptic Segmentation Methods (딥 러닝 기반의 팬옵틱 분할 기법 분석)

  • Kwon, Jung Eun;Cho, Sung In
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

Character Segmentation and Recognition Algorithm for Steel Manufacturing Process Automation (슬라브 제품 정보 인식을 위한 문자 분리 및 문자 인식 알고리즘 개발)

  • Choi, Sung-Hoo;Yun, Jong-Pil;Park, Young-Su;Park, Jee-Hoon;Koo, Keun-Hwi;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.389-391
    • /
    • 2007
  • This paper describes about the printed character segmentation and recognition system for slabs in steel manufacturing process. To increase the recognition rate, it is important to improve success rate of character segmentation. Since Slabs front area surface are not uniform and surface temperature is very high, marked characters not only undergo damages but also have much noise. On the other hand, since almost marked characters are very thick and the space between characters is only about 10 $^{\sim}$ 15 mm, there are many touching characters. Therefore appropriate character image preprocessing and segmentation algorithm is needed. In this paper we propose a multi-local thresholding method for damaged character restoration, a modified touching character segmentation, algorithm for marked characters. Finally a effective Multi-Class SVM is used to recognize segmented characters.

  • PDF