• Title/Summary/Keyword: Hand gesture recognition

Search Result 311, Processing Time 0.025 seconds

8-Straight Line Directions Recognition Algorithm for Hand Gestures Using Coordinate Information (좌표 정보를 이용한 손동작 직선 8 방향 인식 알고리즘)

  • SODGEREL, BYAMBASUREN;Kim, Yong-Ki;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.259-267
    • /
    • 2015
  • In this paper, we proposed the straight line determination method and the algorithm for 8 directions determination of straight line using the coordinate information and the property of trigonometric function. We conduct an experiment that is 8 hand gestures are carried out 100 times each, a total of 800 times. And the accuracy for the 8 derection determination algorithm is showed the diagonal direction to the left upper side shows the highest accuracy as 92%, and the direction to the left side, the diagonal direction to the right upper side and the diagonal direction to the right bottom side show the lowest accuracy as 82%. This method with coordinate information through image processing than the existing recognizer and the recognition through learning process is possible using a hand gesture recognition gesture.

Recognition of Hand gesture to Human-Computer Interaction (손 동작을 통한 인간과 컴퓨터간의 상호 작용)

  • Lee, Lae-Kyoung;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2930-2932
    • /
    • 2000
  • In this paper. a robust gesture recognition system is designed and implemented to explore the communication methods between human and computer. Hand gestures in the proposed approach are used to communicate with a computer for actions of a high degree of freedom. The user does not need to wear any cumbersome devices like cyber-gloves. No assumption is made on whether the user is wearing any ornaments and whether the user is using the left or right hand gestures. Image segmentation based upon the skin-color and a shape analysis based upon the invariant moments are combined. The features are extracted and used for input vectors to a radial basis function networks(RBFN). Our "Puppy" robot is employed as a testbed. Preliminary results on a set of gestures show recognition rates of about 87% on the a real-time implementation.

  • PDF

Human-Object Interaction Framework Using RGB-D Camera (RGB-D 카메라를 사용한 사용자-실사물 상호작용 프레임워크)

  • Baeka, Yong-Hwan;Lim, Changmin;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.11-23
    • /
    • 2016
  • Recent days, touch interaction interface is the most widely used interaction interface to communicate with digital devices. Because of its usability, touch technology is applied almost everywhere from watch to advertising boards and it is growing much bigger. However, this technology has a critical weakness. Normally, touch input device needs a contact surface with touch sensors embedded in it. Thus, touch interaction through general objects like books or documents are still unavailable. In this paper, a human-object interaction framework based on RGB-D camera is proposed to overcome those limitation. The proposed framework can deal with occluded situations like hovering the hand on top of the object and also moving objects by hand. In such situations object recognition algorithm and hand gesture algorithm may fail to recognize. However, our framework makes it possible to handle complicated circumstances without performance loss. The framework calculates the status of the object with fast and robust object recognition algorithm to determine whether it is an object or a human hand. Then, the hand gesture recognition algorithm controls the context of each object by gestures almost simultaneously.

Dynamic Bayesian Network based Two-Hand Gesture Recognition (동적 베이스망 기반의 양손 제스처 인식)

  • Suk, Heung-Il;Sin, Bong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.265-279
    • /
    • 2008
  • The idea of using hand gestures for human-computer interaction is not new and has been studied intensively during the last dorado with a significant amount of qualitative progress that, however, has been short of our expectations. This paper describes a dynamic Bayesian network or DBN based approach to both two-hand gestures and one-hand gestures. Unlike wired glove-based approaches, the success of camera-based methods depends greatly on the image processing and feature extraction results. So the proposed method of DBN-based inference is preceded by fail-safe steps of skin extraction and modeling, and motion tracking. Then a new gesture recognition model for a set of both one-hand and two-hand gestures is proposed based on the dynamic Bayesian network framework which makes it easy to represent the relationship among features and incorporate new information to a model. In an experiment with ten isolated gestures, we obtained the recognition rate upwards of 99.59% with cross validation. The proposed model and the related approach are believed to have a strong potential for successful applications to other related problems such as sign languages.

Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile (피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘)

  • Park, Youngmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.411-417
    • /
    • 2021
  • The field that studies human-computer interaction is called HCI (Human-computer interaction). This field is an academic field that studies how humans and computers communicate with each other and recognize information. This study is a study on hand gesture recognition for human interaction. This study examines the problems of existing recognition methods and proposes an algorithm to improve the recognition rate. The hand region is extracted based on skin color information for the image containing the shape of the human hand, and the center of gravity profile is calculated using principal component analysis. I proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. We proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. The existing center of gravity profile has shown the result of incorrect hand gesture recognition for the deformation of the hand due to rotation, but in this study, the center of gravity profile is used and the point where the distance between the points of all contours and the center of gravity is the longest is the starting point. Thus, a robust algorithm was proposed by re-improving the center of gravity profile. No gloves or special markers attached to the sensor are used for hand gesture recognition, and a separate blue screen is not installed. For this result, find the feature vector at the nearest distance to solve the misrecognition, and obtain an appropriate threshold to distinguish between success and failure.

Implementation of Hand-Gesture Interface to manipulate a 3D Object of Augmented Reality (증강현실의 3D 객체 조작을 위한 핸드-제스쳐 인터페이스 구현)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.117-123
    • /
    • 2016
  • A hand-gesture interface to manipulate a 3D object of augmented reality is implemented by recognizing the user hand-gesture in this paper. Proposed method extracts the hand region from real image, and creates augmented object by hand marker recognized user hand-gesture. Also, 3D object manipulation corresponding to user hand-gesture is performed by analyzing a hand region ratio, a numbet of finger and a variation ratio of hand region center. In order to evaluate the performance of the our proposed method, after making a 3D object by using the OpenGL library, all processing tasks are implemented by using the Intel OpenCV library and C++ language. As a result, the proposed method showed the average 90% recognition ratio by the user command-modes successfully.

Hand gesture recognition based on RGB image data (RGB 영상 데이터 기반 손동작 인식)

  • Kim, Gi-Duk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.15-16
    • /
    • 2021
  • 본 논문에서는 RGB 영상 데이터를 입력으로 하여 mediapipe의 손 포즈 추정 알고리즘을 적용해 손가락 관절 및 주요 부위의 위치를 얻고 이를 기반으로 딥러닝 모델에 학습 후 손동작 인식 방법을 제안한다. 연속된 프레임에서 한 손의 손가락 주요 부위 간 좌표를 얻고 차분 벡터의 x, y좌표를 저장한 후 Conv1D, Bidirectional GRU, Transformer를 결합한 딥러닝 모델에 학습 후 손동작 인식 분류를 하였다. IC4You Gesture Dataset 의 한 손 동적 데이터 9개 클래스에 적용한 결과 99.63%의 손동작 인식 정확도를 얻었다.

  • PDF

Emotion Recognition Based on Human Gesture (인간의 제스쳐에 의한 감정 인식)

  • Song, Min-Kook;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • This paper is to present gesture analysis for human-robot interaction. Understanding human emotions through gesture is one of the necessary skills fo the computers to interact intelligently with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. For efficient operation we used recognizing a gesture with HMM(Hidden Markov Model). We constructed a large gesture database, with which we verified our method. As a result, our method is successfully included and operated in a mobile system.

MPEG-U-based Advanced User Interaction Interface Using Hand Posture Recognition

  • Han, Gukhee;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.267-273
    • /
    • 2016
  • Hand posture recognition is an important technique to enable a natural and familiar interface in the human-computer interaction (HCI) field. This paper introduces a hand posture recognition method using a depth camera. Moreover, the hand posture recognition method is incorporated with the Moving Picture Experts Group Rich Media User Interface (MPEG-U) Advanced User Interaction (AUI) Interface (MPEG-U part 2), which can provide a natural interface on a variety of devices. The proposed method initially detects positions and lengths of all fingers opened, and then recognizes the hand posture from the pose of one or two hands, as well as the number of fingers folded when a user presents a gesture representing a pattern in the AUI data format specified in MPEG-U part 2. The AUI interface represents a user's hand posture in the compliant MPEG-U schema structure. Experimental results demonstrate the performance of the hand posture recognition system and verified that the AUI interface is compatible with the MPEG-U standard.

A Real Time Low-Cost Hand Gesture Control System for Interaction with Mechanical Device (기계 장치와의 상호작용을 위한 실시간 저비용 손동작 제어 시스템)

  • Hwang, Tae-Hoon;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1423-1429
    • /
    • 2019
  • Recently, a system that supports efficient interaction, a human machine interface (HMI), has become a hot topic. In this paper, we propose a new real time low-cost hand gesture control system as one of vehicle interaction methods. In order to reduce computation time, depth information was acquired using a time-of-flight (TOF) camera because it requires a large amount of computation when detecting hand regions using an RGB camera. In addition, fourier descriptor were used to reduce the learning model. Since the Fourier descriptor uses only a small number of points in the whole image, it is possible to miniaturize the learning model. In order to evaluate the performance of the proposed technique, we compared the speeds of desktop and raspberry pi2. Experimental results show that performance difference between small embedded and desktop is not significant. In the gesture recognition experiment, the recognition rate of 95.16% is confirmed.