• Title/Summary/Keyword: Hand detection

Search Result 734, Processing Time 0.025 seconds

Detection of Xanthomonas axonopodis pv. citri on Citrus Fruits Using Enzyme-Linked Immunosorbent Assay

  • Jin, Kyoung-Sik;Kang, Ik-Beom;Ko, Kyoung-Il;Lee, Eun-Seob;Heo, Jong-Young;Kang, Young-Kil;Kim, Byung-Ki
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.62-66
    • /
    • 2001
  • Detection of Xanthomonas axonopodis pv. citri (Xac) on citrus fruits for exporting is usually made by bacteriophage test (BPT) to demonstrate the pathogen-free status. BPT has rather time-consuming and complicate procedures for dealing with massive samples to be inspected. In this study, enzyme-linked immunosorbent assay (ELISA) was applied to detect Xac on fruits, and compared with BPT. In ELISA, positive reactions occurred in the bacterial densities of $3\times10^5$ cells/ml or more. To detect the bacterial infection on citrus fruits with a density of lower than $3\times10^5$ cells/ml, the bacterial suspensions were mixed with fruit rinse water and incubated in broth medium. Ordinary peptone sucrose broth (PSB) was not a proper medium for increasing Xac density specifically enough to be detect by ELISA. On the other hand, modified PSB (MPSP) amended with Fe-EDTA (0.25 g/$\ell$) and 2.5% potato-dextrose broth sufficed to differentiate uninfected and infected citrus fruits by ELISA after 24 h incubation of the fruit rinse water. Using various citrus samples from infected and uninfected fields, efficiencies in detecting Xac on fruits were compared between ELISA and BPT. For infected fruits samples, ELISA detected Xac by 100%, while BPT by about 44%, indicating that the detection efficiency was improved by 23.5% by ELISA, compared to BPT. In addition, ELISA has simpler procedures for testing and is less time-consuming than BPT, suggesting that ELISA may be accurate and simple method to detect Xac on citrus fruits.

  • PDF

Detection of Crosswalk for the Walking Guide of the Blind People (시각장애인 보행 안내를 위한 횡단보도 검출 및 방향 판단)

  • Kim, Seon-il;Jeong, Yu-Jin;Lee, Dong-Hee;Jung, Kyeong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.45-48
    • /
    • 2019
  • Detection of crosswalk is an important issue for the blind to walk without the help of others. There is a braille block on the sidewalk, which helps the blind to walk. On the other hand, crosswalk is more dangerous due to the moving vehicles. However, there is no appropriate means to induce the blind. In this paper, we propose a method to detect crosswalk in front of a blind and estimate its direction using an image sensor. We adopt multi-ROIs and make their binary versions. In order to determine whether it is a crosswalk, two features are extracted; one is the number of crossing in the binary image and the other is the ratio of white area. We can also estimate the direction of the crosswalk through the slope of the projection data. We evaluated the performance using experimental dataset and the proposed algorithm showed 80% accuracy of detection.

  • PDF

Methodology of Calibration for Falling Objects Accident-Risk-Zone Approach Detection Algorithm at Port Considering GPS Errors (GPS 오차를 고려한 항만 내 낙하물 사고위험 알고리즘 보정 방법론 개발)

  • Son, Seung-Oh;Kim, Hyeonseo;Park, Juneyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.61-73
    • /
    • 2020
  • Real-time location-sensing technology using location information collected from IoT devices is being applied for safety management purposes in many industries, such as ports. On the other hand, positional error is always present owing to the characteristics of GPS. Therefore, accident-risk detection algorithms must consider positional error. This paper proposes an methodology of calibration for falling object accident-risk-zone approach detection algorithm considering GPS errors. A probability density function was estimated, with positional error data collected from IoT devices as a probability variable. As a result of the verification, the algorithm showed a detection accuracy of 93% and 77%. Overall, the analysis results derived according to the GPS error level will be an important criterion for upgrading algorithms and real-time risk managements in the future.

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

A Study on Real-time Tracking Method of Horizontal Face Position for Optimal 3D T-DMB Content Service (지상파 DMB 단말에서의 3D 컨텐츠 최적 서비스를 위한 경계 정보 기반 실시간 얼굴 수평 위치 추적 방법에 관한 연구)

  • Kang, Seong-Goo;Lee, Sang-Seop;Yi, June-Ho;Kim, Jung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.88-95
    • /
    • 2011
  • An embedded mobile device mostly has lower computation power than a general purpose computer because of its relatively lower system specifications. Consequently, conventional face tracking and face detection methods, requiring complex algorithms for higher recognition rates, are unsuitable in a mobile environment aiming for real time detection. On the other hand, by applying a real-time tracking and detecting algorithm, we would be able to provide a two-way interactive multimedia service between an user and a mobile device thus providing a far better quality of service in comparison to a one-way service. Therefore it is necessary to develop a real-time face and eye tracking technique optimized to a mobile environment. For this reason, in this paper, we proposes a method of tracking horizontal face position of a user on a T-DMB device for enhancing the quality of 3D DMB content. The proposed method uses the orientation of edges to estimate the left and right boundary of the face, and by the color edge information, the horizontal position and size of face is determined finally to decide the horizontal face. The sobel gradient vector is projected vertically and candidates of face boundaries are selected, and we proposed a smoothing method and a peak-detection method for the precise decision. Because general face detection algorithms use multi-scale feature vectors, the detection time is too long on a mobile environment. However the proposed algorithm which uses the single-scale detection method can detect the face more faster than conventional face detection methods.

Performance Analysis of Object Detection Neural Network According to Compression Ratio of RGB and IR Images (RGB와 IR 영상의 압축률에 따른 객체 탐지 신경망 성능 분석)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Lee, Hee Kyung;Choo, Hyon-Gon;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-166
    • /
    • 2021
  • Most object detection algorithms are studied based on RGB images. Because the RGB cameras are capturing images based on light, however, the object detection performance is poor when the light condition is not good, e.g., at night or foggy days. On the other hand, high-quality infrared(IR) images regardless of weather condition and light can be acquired because IR images are captured by an IR sensor that makes images with heat information. In this paper, we performed the object detection algorithm based on the compression ratio in RGB and IR images to show the detection capabilities. We selected RGB and IR images that were taken at night from the Free FLIR Thermal dataset for the ADAS(Advanced Driver Assistance Systems) research. We used the pre-trained object detection network for RGB images and a fine-tuned network that is tuned based on night RGB and IR images. Experimental results show that higher object detection performance can be acquired using IR images than using RGB images in both networks.

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재불량 화물차 탐지 시스템 개발)

  • Jung, Woojin;Park, Yongju;Park, Jinuk;Kim, Chang-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.562-565
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. However, this irregular weight distribution is not possible to be recognized with the current weight measurement system for vehicles on roads. To address this limitation, we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles from the CCTV, black box, and hand-held camera point of view. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. From the result, we believe that public big data can be utilized more efficiently and applied to the development of an object detection-based overloaded vehicle detection model.

  • PDF

A Study on the Classification of Hand-written Korean Character Types using Hough Transform (Hough Transform을 이용한 한글 필기체 형식 분류에 관한 연구)

  • 구하성;고경화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1991-2000
    • /
    • 1994
  • In this paper, an alagorithm with six types of classification is suggested for the recognition system of hand-written Korean characters. After thinning process and truncating process for noise redection. The input images are used generalized by $64\times64$ size. The six type classification is composed of preliminary and secondary classification process by using the learning algoritm of multi-layer perceptron. Subblock Hough transform is used as local feature and sampling Hough transform is used as global feature. Experiment is conducted for 1800 characters which is written 31 times per each type by 10 persons. The 90% recognition rate is resulted by the preliminary classification of detection the final consonant and by the secondary classification of detecting the vowels.

  • PDF

Vision- Based Finger Spelling Recognition for Korean Sign Language

  • Park Jun;Lee Dae-hyun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.768-775
    • /
    • 2005
  • For sign languages are main communication means among hearing-impaired people, there are communication difficulties between speaking-oriented people and sign-language-oriented people. Automated sign-language recognition may resolve these communication problems. In sign languages, finger spelling is used to spell names and words that are not listed in the dictionary. There have been research activities for gesture and posture recognition using glove-based devices. However, these devices are often expensive, cumbersome, and inadequate for recognizing elaborate finger spelling. Use of colored patches or gloves also cause uneasiness. In this paper, a vision-based finger spelling recognition system is introduced. In our method, captured hand region images were separated from the background using a skin detection algorithm assuming that there are no skin-colored objects in the background. Then, hand postures were recognized using a two-dimensional grid analysis method. Our recognition system is not sensitive to the size or the rotation of the input posture images. By optimizing the weights of the posture features using a genetic algorithm, our system achieved high accuracy that matches other systems using devices or colored gloves. We applied our posture recognition system for detecting Korean Sign Language, achieving better than $93\%$ accuracy.

  • PDF

A Study on Touch Recognition Improvement using Contrast Detection Method (대비검출방식을 이용한 터치 인식 개선방법에 관한 연구)

  • Park, jae-wan;Song, dae-hyeon;Kim, jong-gu;Kim, dong-min;Lee, chil-woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.169-172
    • /
    • 2009
  • In this paper, we propose the method to improving touch recognition using edge mask on a touched object at vision-based touchscreen. Because vision-based touchscreen recognizes touch using threshold simply, noise occur in fist or wrist in case of touch directly with hand, correct touch recognition was difficult. However, in this paper, we execute morphology and extract surrounding mask in object that approximate to touchscreen, use change of contrast for the mask. When we touch screen to use these dynamic information, prevent noise. The goal of this paper is when hand was touched on screen it can recognize to touch.

  • PDF