• Title/Summary/Keyword: Hand detection

Search Result 734, Processing Time 0.029 seconds

Hand Motion Signal Extraction Based on Electric Field Sensors Using PLN Spectrum Analysis (PLN 성분 분석을 통한 전기장센서 기반 손동작신호 추출)

  • Jeong, Seonil;Kim, Youngchul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.97-101
    • /
    • 2020
  • Using passive electric field sensor which operates in non-contact mode, we can measure the electric potential induced from the change of electric charges on a sensor caused by the movement of human body or hands. In this study, we propose a new method, which utilizes PLN induced to the sensor around the moving object, to detect one's hand movement and extract gesture frames from the detected signals. Signals from the EPS sensors include a large amount of power line noise usually existing in the places such as rooms or buildings. Using the fact that the PLN is shielded in part by human access to the sensor, signals caused by motion or hand movement are detected. PLN consists mainly of signals with frequency of 60 Hz and its harmonics. In our proposed method, signals only 120 Hz component in frequency domain are chosen selectively and exclusively utilized for detection of hand movement. We use FFT to measure a spectral-separated frequency signal. The signals obtained from sensors in this way are continued to be compared with the threshold preset in advance. Once motion signals are detected passing throng the threshold, we determine the motion frame based on period between the first threshold passing time and the last one. The motion detection rate of our proposed method was about 90% while the correct frame extraction rate was about 85%. The method like our method, which use PLN signal in order to extract useful data about motion movement from non-contact mode EPS sensors, has been rarely reported or published in recent. This research results can be expected to be useful especially in circumstance of having surrounding PLN.

Study on Plastics Detection Technique using Terra/ASTER Data

  • Syoji, Mizuhiko;Ohkawa, Kazumichi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1460-1463
    • /
    • 2003
  • In this study, plastic detection technique was developed, applying remote sensing technology as a method to extract plastic wastes, which is one of the big causes of concern contributing to environmental destruction. It is possible to extract areas where plastic (including polypropylene and polyethylene) wastes are prominent, using ASTER data by taking advantage of its absorptive characteristics of ASTER/SWIR bands. The algorithm is applicable to define large industrial wastes disposal sites and areas where plastic greenhouses are concentrated. However, the detection technique with ASTER/SWIR data has some research tasks to be tackled, which includes a partial secretion of reference spectral, depending on some conditions of plastic wastes and a detection error in a region mixed with vegetations and waters. Following results were obtained after making comparisons between several detection methods and plastic wastes in different conditions; (a)'spectral extraction method' was suitable for areas where plastic wastes exist separated from other objects, such as coastal areas where plastic wastes drifted ashore. (single plastic spectral was used as a reference for the 'spectral extraction method') (b)On the other hand, the 'spectral extraction method' was not suitable for sites where plastic wastes are mixed with vegetation and soil. After making comparison of the processing results of a mixed area, it was found that applying both 'separation method' using un-mixing and ‘spectral extraction method’ with NDVI masked is the most appropriate method to extract plastic wastes. Also, we have investigated the possibility of reducing the influence of vegetation and water, using ASTER/TIR, and successfully extracted some places with plastics. As a conclusion, we have summarized the relationship between detection techniques and conditions of plastic wastes and propose the practical application of remote sensing technology to the extraction of plastic wastes.

  • PDF

New Scheme for Smoker Detection (흡연자 검출을 위한 새로운 방법)

  • Lee, Jong-seok;Lee, Hyun-jae;Lee, Dong-kyu;Oh, Seoung-jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1120-1131
    • /
    • 2016
  • In this paper, we propose a smoker recognition algorithm, detecting smokers in a video sequence in order to prevent fire accidents. We use description-based method in hierarchical approaches to recognize smoker's activity, the algorithm consists of background subtraction, object detection, event search, event judgement. Background subtraction generates slow-motion and fast-motion foreground image from input image using Gaussian mixture model with two different learning-rate. Then, it extracts object locations in the slow-motion image using chain-rule based contour detection. For each object, face is detected by using Haar-like feature and smoke is detected by reflecting frequency and direction of smoke in fast-motion foreground. Hand movements are detected by motion estimation. The algorithm examines the features in a certain interval and infers that whether the object is a smoker. It robustly can detect a smoker among different objects while achieving real-time performance.

Defect Detection and Defect Classification System for Ship Engine using Multi-Channel Vibration Sensor (다채널 진동 센서를 이용한 선박 엔진의 진동 감지 및 고장 분류 시스템)

  • Lee, Yang-Min;Lee, Kwang-Young;Bae, Seung-Hyun;Jang, Hwi;Lee, Jae-Kee
    • The KIPS Transactions:PartA
    • /
    • v.17A no.2
    • /
    • pp.81-92
    • /
    • 2010
  • There has been some research in the equipment defect detection based on vibration information. Most research of them is based on vibration monitoring to determine the equipment defect or not. In this paper, we introduce more accurate system for engine defect detection based on vibration information and we focus on detection of engine defect for boat and system control. First, it uses the duplicated-checking method for vibration information to determine the engine defect or not. If there is a defect happened, we use the method using error part of vibration information basis with error range to determine which kind of error is happened. On the other hand, we use the engine trend analysis and standard of safety engine to implement the vibration information database. Our simulation results show that the probability of engine defect determination is 100% and the probability of engine defect classification and detection is 96%.

Social Media based Real-time Event Detection by using Deep Learning Methods

  • Nguyen, Van Quan;Yang, Hyung-Jeong;Kim, Young-chul;Kim, Soo-hyung;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • Event detection using social media has been widespread since social network services have been an active communication channel for connecting with others, diffusing news message. Especially, the real-time characteristic of social media has created the opportunity for supporting for real-time applications/systems. Social network such as Twitter is the potential data source to explore useful information by mining messages posted by the user community. This paper proposed a novel system for temporal event detection by analyzing social data. As a result, this information can be used by first responders, decision makers, or news agents to gain insight of the situation. The proposed approach takes advantages of deep learning methods that play core techniques on the main tasks including informative data identifying from a noisy environment and temporal event detection. The former is the responsibility of Convolutional Neural Network model trained from labeled Twitter data. The latter is for event detection supported by Recurrent Neural Network module. We demonstrated our approach and experimental results on the case study of earthquake situations. Our system is more adaptive than other systems used traditional methods since deep learning enables to extract the features of data without spending lots of time constructing feature by hand. This benefit makes our approach adaptive to extend to a new context of practice. Moreover, the proposed system promised to respond to acceptable delay within several minutes that will helpful mean for supporting news channel agents or belief plan in case of disaster events.

Real-Time License Plate Detection Based on Faster R-CNN (Faster R-CNN 기반의 실시간 번호판 검출)

  • Lee, Dongsuk;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.511-520
    • /
    • 2016
  • Automatic License Plate Detection (ALPD) is a key technology for a efficient traffic control. It is used to improve work efficiency in many applications such as toll payment systems and parking and traffic management. Until recently, the hand-crafted features made for image processing are used to detect license plates in most studies. It has the advantage in speed. but can degrade the detection rate with respect to various environmental changes. In this paper, we propose a way to utilize a Faster Region based Convolutional Neural Networks (Faster R-CNN) and a Conventional Convolutional Neural Networks (CNN), which improves the computational speed and is robust against changed environments. The module based on Faster R-CNN is used to detect license plate candidate regions from images and is followed by the module based on CNN to remove False Positives from the candidates. As a result, we achieved a detection rate of 99.94% from images captured under various environments. In addition, the average operating speed is 80ms/image. We implemented a fast and robust Real-Time License Plate Detection System.

The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality (비마커 증강현실을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기반 손 자세의 추정)

  • Lee, Sun-Hyoung;Hahn, Hern-Soo;Han, Young-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.155-166
    • /
    • 2012
  • This paper proposes a new method of estimating the hand pose through the Mean-Shift tracking algorithm using the fusion of color and depth information for marker-less augmented reality. On marker-less augmented reality, the most of previous studies detect the hand region using the skin color from simple experimental background. Because finger features should be detected on the hand, the hand pose that can be measured from cameras is restricted considerably. However, the proposed method can easily detect the hand pose from complex background through the new Mean-Shift tracking method using the fusion of the color and depth information from 3D sensor. The proposed method of estimating the hand pose uses the gravity point and two random points on the hand without largely constraints. The proposed Mean-Shift tracking method has about 50 pixels error less than general tracking method just using color value. The augmented reality experiment of the proposed method shows results of its performance being as good as marker based one on the complex background.

CNN-Based Hand Gesture Recognition for Wearable Applications (웨어러블 응용을 위한 CNN 기반 손 제스처 인식)

  • Moon, Hyeon-Chul;Yang, Anna;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.246-252
    • /
    • 2018
  • Hand gestures are attracting attention as a NUI (Natural User Interface) of wearable devices such as smart glasses. Recently, to support efficient media consumption in IoT (Internet of Things) and wearable environments, the standardization of IoMT (Internet of Media Things) is in the progress in MPEG. In IoMT, it is assumed that hand gesture detection and recognition are performed on a separate device, and thus provides an interoperable interface between these modules. Meanwhile, deep learning based hand gesture recognition techniques have been recently actively studied to improve the recognition performance. In this paper, we propose a method of hand gesture recognition based on CNN (Convolutional Neural Network) for various applications such as media consumption in wearable devices which is one of the use cases of IoMT. The proposed method detects hand contour from stereo images acquisitioned by smart glasses using depth information and color information, constructs data sets to learn CNN, and then recognizes gestures from input hand contour images. Experimental results show that the proposed method achieves the average 95% hand gesture recognition rate.

Hand Pose Recognition Using Fingertip Detection (손가락 끝 점을 이용한 손 형상 인식)

  • Kim, Kyung-Ho;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1143-1148
    • /
    • 2006
  • 사용자 친화형 유저 인터페이스 구현을 위해 인간의 손 형상을 실시간으로 인식하는 연구의 중요성이 부각되고 있다. 그러나 인간의 손은 자유도가 크기 때문에 손 형상을 정확히 인식하기란 매우 어렵고 또한 피부색과 유사한 색을 가지는 복잡한 배경에서는 더욱 곤란하다. 본 논문에서는 별도의 센서를 부착하지 않고 카메라를 사용하여 피부색 정보에 의한 손 형상을 분할한 후 손가락 끝 점을 찾는다. 찾은 손가락 끝점을 이용하여 방향을 탐지하는 알고리즘에 대해 기술한다. 이 방법은 템플리트 매칭을 이용하여 손가락 끝 점을 탐색한 후 찾은 손 가락 끝 점과 손목의 중심을 이용하여 전, 후, 좌, 우 방향을 탐지한다. 제안하는 방법을 이용하여 3D가상현실 공간에서의 Navigation에 응용하였으며, 실험결과 전진, 후진 및 좌측, 우측의 방향전환도 매우 좋은 결과를 보였다. 또한 본 논문에서 제안하는 방법은 마우스, 키보드, 조이스틱 등의 조작 없이 전, 후, 좌, 우 방향전환을 사용자가 직관적으로 지시함으로써 보다 자연스러운 인간과 컴퓨터의 상호작용을 제공할 수 있을 것이다.

  • PDF

Classification System of EEG Signals for Mental Action (정신활동에 의한 EEG신호의 분류시스템)

  • 김민수;김기열;정대영;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2875-2878
    • /
    • 2003
  • In this paper, we propose an EEG-based mental state prediction method during a mental tasks. In the experimental task, a subject goes through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and hitting a key. Considering the subject's varying brain activities, we model subjects' mental states with defining selection time. EEG signals from four subjects were recorded while they performed three mental tasks. Feature vectors defined by these representations were classified with a standard, feed-forward neural network trained via the error back-propagation algorithm. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or cognitive decision discrimination methods.

  • PDF