• Title/Summary/Keyword: Hand Tracking

Search Result 350, Processing Time 0.029 seconds

Emergency Signal Detection based on Arm Gesture by Motion Vector Tracking in Face Area

  • Fayyaz, Rabia;Park, Dae Jun;Rhee, Eun Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper presents a method for detection of an emergency signal expressed by arm gestures based on motion segmentation and face area detection in the surveillance system. The important indicators of emergency can be arm gestures and voice. We define an emergency signal as the 'Help Me' arm gestures in a rectangle around the face. The 'Help Me' arm gestures are detected by tracking changes in the direction of the horizontal motion vectors of left and right arms. The experimental results show that the proposed method successfully detects 'Help Me' emergency signal for a single person and distinguishes it from other similar arm gestures such as hand waving for 'Bye' and stretching. The proposed method can be used effectively in situations where people can't speak, and there is a language or voice disability.

Hand Mouse System Using a Pre-defined Gesture for the Elimination of a TV Remote Controller

  • Kim, Kyung-Won;Bae, Dae-Hee;Yi, Joonhwan;Oh, Seong-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.88-94
    • /
    • 2012
  • Many hand gesture recognition systems using advanced computer vision techniques to eliminate the need for a TV remote controller have been proposed. Nevertheless, some issues still remain, such as high computational complexity and insufficient information on the target object and background. Moreover, none of the proposed techniques consider how to enter the control mode of the system. This means that they may need a TV remote controller to enter the control mode. This paper proposes a hand mouse system using a pre-defined gesture with high background adaptability. By doing so, a remote controller to enter the control mode of the IPTV system can be eliminated.

  • PDF

Hand Gesture Interface for Manipulating 3D Objects in Augmented Reality (증강현실에서 3D 객체 조작을 위한 손동작 인터페이스)

  • Park, Keon-Hee;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.20-28
    • /
    • 2010
  • In this paper, we propose a hand gesture interface for the manipulation of augmented objects in 3D space using a camera. Generally a marker is used for the detection of 3D movement in 2D images. However marker based system has obvious defects since markers are always to be included in the image or we need additional equipments for controling objects, which results in reduced immersion. To overcome this problem, we replace marker by planar hand shape by estimating the hand pose. Kalman filter is for robust tracking of the hand shape. The experimental result indicates the feasibility of the proposed algorithm for hand based AR interfaces.

Histogram Based Hand Recognition System for Augmented Reality (증강현실을 위한 히스토그램 기반의 손 인식 시스템)

  • Ko, Min-Su;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1564-1572
    • /
    • 2011
  • In this paper, we propose a new histogram based hand recognition algorithm for augmented reality. Hand recognition system makes it possible a useful interaction between an user and computer. However, there is difficulty in vision-based hand gesture recognition with viewing angle dependency due to the complexity of human hand shape. A new hand recognition system proposed in this paper is based on the features from hand geometry. The proposed recognition system consists of two steps. In the first step, hand region is extracted from the image captured by a camera and then hand gestures are recognized in the second step. At first, we extract hand region by deleting background and using skin color information. Then we recognize hand shape by determining hand feature point using histogram of the obtained hand region. Finally, we design a augmented reality system by controlling a 3D object with the recognized hand gesture. Experimental results show that the proposed algorithm gives more than 91% accuracy for the hand recognition with less computational power.

Comparing Initiating and Responding Joint Attention as a Social Learning Mechanism: A Study Using Human-Avatar Head/Hand Interaction (사회 학습 기제로서 IJA와 RJA의 비교: 인간-아바타 머리/손 상호작용을 이용한 연구)

  • Kim, Mingyu;Kim, So-Yeon;Kim, Kwanguk
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.645-652
    • /
    • 2016
  • Joint Attention (JA) has been known to play a key role in human social learning. However, relative impact of different interaction types has yet to be rigorously examined because of limitation of existing methodologies to simulate human-to-human interaction. In the present study, we designed a new JA paradigm with emulating human-avatar interaction and virtual reality technologies, and tested the paradigm in two experiments with healthy adults. Our results indicated that initiating JA (IJA) condition was more effective than responding JA (RJA) condition for social learning in both head and hand interactions. Moreover, the hand interaction involved better information processing than the head interaction. The implication of the results, the validity of the new paradigm, and limitations of this study were discussed.

A Precise Tracking System for Dynamic Object using IR sensor for Spatial Augmented Reality (공간증강현실 구현을 위한 적외선 센서 기반 동적 물체 정밀 추적 시스템)

  • Oh, JiSoo;Park, Jinho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.115-122
    • /
    • 2017
  • As the era of the fourth industrial revolution began, augmented reality showed infinite possibilities throughout society. However, current augmented reality systems such as head-mount display and hand-held display systems suffer from various problems such as weariness and nausea, and thus space-augmented reality, which is a projector-based augmented reality technology, is attracting attention. Spacial augmented reality requires precise tracking of dynamic objects to project virtual images in order to increase realism of augmented reality and induce user 's immersion. The infrared sensor-based precision tracking algorithm developed in this paper demonstrates very robust tracking performance with an average error rate of less than 1.5% and technically opens the way towards advanced augmented reality technologies such as tracking for arbitrary objects, and Socially, by easy-to-use tracking algorithms for non-specialists, it allows designers, students, and children to easily create and enjoy their own augmented reality content.

Development of Motion Recognition Platform Using Smart-Phone Tracking and Color Communication (스마트 폰 추적 및 색상 통신을 이용한 동작인식 플랫폼 개발)

  • Oh, Byung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.143-150
    • /
    • 2017
  • In this paper, we propose a novel motion recognition platform using smart-phone tracking and color communication. The interface requires only a camera and a personal smart-phone to provide a motion control interface rather than expensive equipment. The platform recognizes the user's gestures by the tracking 3D distance and the rotation angle of the smart-phone, which acts essentially as a motion controller in the user's hand. Also, a color coded communication method using RGB color combinations is included within the interface. Users can conveniently send or receive any text data through this function, and the data can be transferred continuously even while the user is performing gestures. We present the result that implementation of viable contents based on the proposed motion recognition platform.

Submodule Level Distributed Maximum Power Point Tracking PV Optimizer with an Integrated Architecture

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Shi, Shuhuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1308-1316
    • /
    • 2017
  • The distributed maximum power point tracking (DMPPT) concept is widely adopted in photovoltaic systems to avoid mismatch loss. However, the high cost and complexity of DMPPT hinder its further promotion in practice. Based on the concept of DMPPT, this paper presents an integrated submodule level half-bridge stack structure along with an optimal current point tracking (OCPT) control algorithm. In this full power processing integrated solution, the number of power switches and passive components is greatly reduced. On the other hand, only one current sensor and its related AD unit are needed to perform the ideal maximum power generation for all of the PV submodules in any irradiance case. The proposal can totally eliminate different small-scaled mismatch effects in real-word condition and the true maximum power point of each PV submodule can be achieved. As a result, the ideal maximum power output of the whole PV system can be achieved. Compared with current solutions, the proposal further develops the integration level of submodule DMPPT solutions with a lower cost and a smaller size. Moreover, the individual MPPT tracking for all of the submodules are guaranteed.

Motor Skill Learning on the Ipsi-Lateral Upper Extremity to the Damaged Hemisphere in Stroke Patients

  • Son, Sung Min;Hwang, Yoon Tae;Nam, Seok Hyun;Kwon, Yonghyun
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.4
    • /
    • pp.212-215
    • /
    • 2019
  • Purpose: This study examined whether there is a difference in motor learning through short-term repetitive movement practice in stroke survivors with a unilateral brain injury compared to normal elderly participants. Methods: Twenty-six subjects who were divided into a stroke group (n=13) or sex-aged matched normal elder group (n=13) participated in this study. To evaluate the effects of motor learning, the participants conducted a tracking task for visuomotor coordination. The accuracy index was calculated for each trial. Both groups received repetitive tracking task training of metacarpophalangeal joint for 50 trials. The stroke group performed a tracking task in the upper extremity insi-lesional to the damaged hemisphere, and the normal elder group performed the upper extremity matched for the same side. Results: Two-way repetitive ANOVA revealed a significant difference in the interactions ($time{\times}group$) and time effects. These results indicated that the motor skill improved in both the stroke and normal elder group with a tracking task. On the other hand, the stroke group showed lesser motor learning skill than the normal elder group, in comparison with the amount of motor learning improvement. Conclusion: These results provide novel evidence that stroke survivors with unilateral brain damage might have difficulty in performing ipsilateral movement as well as in motor learning with the ipsilateral upper limb, compared to normal elderly participants.

Study on Spatio-Temporal Eye-Hand Coordination in Targeting Tasks (지시운동 수행동안 안구와 손의 시공간적 협응에 관한 연구)

  • Eun, H.I.;Yu, M.;Lee, A.R.;Kim, D.W.;Kwon, T.K.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.417-422
    • /
    • 2007
  • In this study, we investigated spatio-temporal eye-hand coordination by the "Global effect paradigm", a target-distracter configuration Global effect is observed a variety of visual tasks, for example, during rapid automatic tracking, scanning for target detail, and the comparison of target configurations. Global effect used to investigate eye-hand coordination with a task that presents a target close to a distracter. Eight young subjects participated in the experiments. The experiments consist of using a distracter less eccentric than the targe1 and using a distracter more eccentric than target. Each experiment consist of tasks which are making reference, pointing the target with watching visual stimulation(saccade) and pointing the target. The subject's task was to move towards the target as quickly as possible. We measured the eye movement by using EOG and the hand movement by using NDI Optotrak system. This study shows that eye and hand movement exists for global effect paradigm in spatio-temporal coordination.