• Title/Summary/Keyword: Hand Shape

Search Result 970, Processing Time 0.028 seconds

Comparative study of the pulse shape discrimination (PSD) performance of pixelated stilbene and plastic scintillator (EJ-276) arrays for a coded-aperture-based hand-held dual-particle imager

  • Jihwan Boo ;Manhee Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1677-1686
    • /
    • 2023
  • As the demand for the detection of special nuclear materials (SNMs) increases, the use of imaging instruments that can sensitively image both gamma-ray and neutron signatures has become necessary. This study compared the pulse shape discrimination (PSD) performance of gamma/neutron events when employing either a pixelated stilbene or a plastic (EJ-276) scintillator array coupled to a silicon photomultiplier (SiPM) array in a dual-particle imager. The stilbene array allowed a lower energy threshold above which neutron and gamma-ray events can be clearly distinguished. A greater number of events can, therefore, be used when forming both gamma-ray and neutron images, which shortens the time required to acquire the images by nearly seven times.

Robust Finger Shape Recognition to Shape Angle by using Geometrical Features (각도 변화에 강인한 기하학적 특징 기반의 손가락 인식 기법)

  • Ahn, Ha-Eun;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1686-1694
    • /
    • 2014
  • In this paper, a new scheme to recognize a finger shape in the depth image captured by Kinect is proposed. Rigid transformation of an input finger shape is pre-processed for its robustness against the shape angle of input fingers. After extracting contour map from hand region, observing the change of contour pixel location is performed to calculate rotational compensation angle. For the finger shape recognition, we first acquire three pixel points, the most left, right, and top located pixel points. In the proposed algorithm, we first acquire three pixel points, the most left, right, and top located pixel points for the finger shape recognition, also we use geometrical features of human fingers such as Euclidean distance, the angle of the finger and the pixel area of hand region between each pixel points to recognize the finger shape. Through experimental results, we show that the proposed algorithm performs better than old schemes.

A Morphological Study of Hand and Foot according to the Sasang Constitution (사상인(四象人) 수족(手足)의 형태학적(形態學的) 특징(特徵))

  • Park, Eun-kyung;Park, Seong-sik
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.195-207
    • /
    • 1999
  • 1. PURPOSE This research is a study on constitutional diagnosis through the external appearances, and for finding shape differences of the hand and foot according to the Sasang Constitution. 2. Method We collected 148 person who were healthy and measured length, breadth, circumference and thickness of their hands and feet with 'The Measurement of R. Martin'. We analyzed shape differences of hand and foot according to the Sasang Constitution and made a certain conclusion. 3. Results and Conclusions We got the morphologic characteristics of hand and foot according to the Sasang Constitution. (1) The physical characteristics. The weight is heaviest in Taeumin. (2) The morphologic characteristics of Hand. (1) The wrist circumference is longest in Taeumin. (2) The finger length / hand length(ratio) is higher Soeumin than Taeumin. (3) The wrist breadth is largest in Taeumin(only male). (4) The wrist breadth is larger Taeumin than Soeumin(only female). (5) The palm length is longer Taeumin than Soyangin(only male). (6) The maximum hand breadth is larger Taeumin than Soeumi (only male). (7) The 2nd, 3rd and 4th finger length is longer Soeumin than Soyangin(only male). (3) The morphologic characteristics of Foot. (1) The foot thickness is thickest in Taeumin. (2) The foot breadth is largest in Taeumin. (3) The ankle circumference is longest in Taeumin(only male).

  • PDF

Grip Force, Finger Force, and Comfort analyses of Young and Old People by Hand Tool Handle Shapes (수공구 손잡이 형태에 따른 청.노년층의 악력과 손가락 힘 및 편안함 분석)

  • Kong, Yong-Ku;Sohn, Seong-Tae;Kim, Dae-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2009
  • The purpose of this study was to evaluate aging (young and old), gender (male and female), and handle shape effects on grip force, finger force, and subjective comfort. Four handle shapes of A, D, I, and V were implemented by a multi-finger force measurement (MFFM) system which was developed to measure every finger force with different grip spans. Forty young (20 males and 20 females) and forty old (20 males and 20 females) subjects participated in twelve gripping tasks and rated their comfort for all handles using a 5-point scale. Grip forces were calculating by summation of all four forces of the index, middle, ring and little fingers. Results showed that young males (283.2N) had larger gripping force than old males (235.6N), while young females (151.4N) had lower force than old females (153.6N). Young subjects exerted the largest gripping force with D-shape due to large contribution of the index and middle fingers and the smallest with A-shape; however, old subjects exerted the largest with I-shape and the smallest with V-shape due to small contribution of the ring and little fingers. As expected, the middle finger had the largest finger force and the little finger had the smallest. The fraction of contribution of index and ring fingers to grip force differed among age groups. Interestingly, young subjects provided larger index finger force than ring finger force, whereas old subjects showed that larger ring finger forces than index finger force in the griping tasks. In the relationship between performance and subjective comfort, I-shape exerting the largest grip force had less comfort than D-shape producing the second largest grip force. The findings of this study can provide guidelines on designing hand tool handle to obtain better performance as well as users' comfort.

Hand Gesture Recognition Using Shape Decomposition (형상 분해를 이용한 손동작 인식)

  • Choi, Junyeong;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.223-224
    • /
    • 2010
  • 본 논문에서는 형상 분해(Shape Decomposition)를 이용한 손동작 인식 방법을 제안한다. 형상 분해 방법을 손동작 인식에 적용함으로써 다양한 동작에 대해서 유연한 인식이 가능하며, 기존의 형상 분해 방법을 손 형상 분해에 적합하게 효율적으로 개선함으로써 실시간 연산이 가능하도록 하였다.

  • PDF

A model experiment on the underwater shape of deepsea bottom trawl net (심해 저층트롤망의 수중형상에 관한 모형실험)

  • Park, Gwang-Je;Lee, Ju-Hee;Kim, Hyung-Seok;Jeong, Sun-Beom;Oh, Taeg-Yun;Bae, Jae-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.3
    • /
    • pp.134-147
    • /
    • 2006
  • A model experiment using circulation water channel was carried out to investigate the dynamic characteristics of bottom trawl net which can be used in sea mount of North Pacific. Hydrodynamic resistance and shape variation according to the flow velocity and angle of hand rope transformation for net were measured, and experimental value was analyzed as the value of full-scale bottom trawl net. The results summarized are as follows; At the $30^{\circ}$ of angle of hand rope to net, hydrodynamic resistance varied from 0.5kgf to 2.68kgf as the flow velocity increased between 0.31m/s and 0.92m/s, and formula of hydrodynamic resistance for the model net was $F_m=3.04\;{\cdot}\;{\upsilon}^{1.53}$. At the fixed angle of hand rope, Net height was low and Net width was high according to the increase of flow velocity, and in addition, vertical opening was low and Net width was high by the increase of angle of hand rope at the fixed flow velocity. At the $30^{\circ}$ of angle of hand rope to net, net opening area was $0.214m^2$ as flow velocity was 0.61m/s, and formula of net opening area for the model net was $S_m=-0.22{\upsilon}+0.35$. At the $30^{\circ}$ of angle of hand rope to net, catch efficiency seemed to be highest as $0.319m^3/s$ of filtering volume at the 0.76m/s(51kt's) of flow velocity. Shape variation of net showed the gradual laminar transform for the variation of flow velocity but there needed some improvements due to the occurrence of shortening at the ahead of wing net.

Finger Directivity Recognition Algorithm using Shape Decomposition (형상분해를 이용한 손가락 방향성 인식 알고리즘)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.3
    • /
    • pp.197-201
    • /
    • 2011
  • The use of gestures provides an attractive alternate to cumbersome interfaces for human-computer devices interaction. This has motivated a very active research area concerned with computer vision-based recognition of hand gestures. The most important issues in hand gesture recognition is to recognize the directivity of finger. The primitive elements extracted to a hand gesture include in very important information on the directivity of finger. In this paper, we propose the recognition algorithm of finger directivity by using the cross points of circle and sub-primitive element. The radius of circle is increased from minimum radius including main-primitive element to it including sub-primitive elements. Through the experiment, we demonstrated the efficiency of proposed algorithm.

The "Sombrero-Shape" Super-Thin Pedicled ALT Flap for Complete Scrotal Reconstruction Following Fournier's Gangrene

  • Sapino, Gianluca;Gonvers, Stephanie;Cherubino, Mario;di Summa, Pietro G.
    • Archives of Plastic Surgery
    • /
    • v.49 no.3
    • /
    • pp.453-456
    • /
    • 2022
  • When the scrotal sac is entirely debrided following a Fournier gangrene, testes exposure poses unique challenges for the reconstructive surgeon. Despite the anterolateral thigh (ALT) flap is considered a workhorse in such context, aesthetic results are often suboptimal because of the lack of natural ptosis and patchwork appearance. We describe the use of a super-thin pedicled ALT flap for total scrotal reconstruction, modified according to a peculiar flap design and inset technique. A 42-year-old man was referred to our department for delayed total scrotal reconstruction 8 months after a Fournier gangrene extensive debridement. A super-thin pedicled ALT flap from the right thigh was designed: in the central portion of the ALT, a lateral skin paddle extension was marked to guarantee adequate posterior anchorage during insetting and ptosis of the scrotal sac. This particular flap arrangement has inspired the name "sombrero" as the shape is akin to the famous hat. No secondary refinements were needed, and the patient showed satisfying aesthetic and functional results at 12 months' follow-up. The ALT flap design "sombrero" modification proposed in this article can improve scrotum cosmesis and patient satisfaction in a single-stage single-flap procedure.

Hand Reaching Movement Acquired through Reinforcement Learning

  • Shibata, Katsunari;Sugisaka, Masanori;Ito, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.474-474
    • /
    • 2000
  • This paper shows that a system with two-link arm can obtain hand reaching movement to a target object projected on a visual sensor by reinforcement learning using a layered neural network. The reinforcement signal, which is an only signal from the environment, is given to the system only when the hand reaches the target object. The neural network computes two joint torques from visual sensory signals, joint angles, and joint angular velocities considering the urn dynamics. It is known that the trajectory of the voluntary movement o( human hand reaching is almost straight, and the hand velocity changes like bell-shape. Although there are some exceptions, the properties of the trajectories obtained by the reinforcement learning are somewhat similar to the experimental result of the human hand reaching movement.

  • PDF

Flexible 3-dimension measuring system using robot hand

  • Ishimatsu, T.;Yasuda, K.;Kumon, K.;Matsui, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.700-704
    • /
    • 1989
  • A robotic system with a 3-dimensional profile measuring sensor is developed in order to measure the complicated shape of the target body. Due to this 3-dimensional profile measuring sensor, a computer is able to adjust the posture of the robot hand so that complicated global profile of the target body can be recognized after several measurements from the variant directions. In order to enable fast data processing, a digital signal processor and a look-up table is introduced.

  • PDF