• Title/Summary/Keyword: Hand Recognition

Search Result 1,046, Processing Time 0.024 seconds

Changes in the Recognition Rate of Kodály Learning Devices using Machine Learning (머신러닝을 활용한 코다이 학습장치의 인식률 변화)

  • YunJeong LEE;Min-Soo KANG;Dong Kun CHUNG
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Kodály hand signs are symbols that intuitively represent pitch and note names based on the shape and height of the hand. They are an excellent tool that can be easily expressed using the human body, making them highly engaging for children who are new to music. Traditional hand signs help beginners easily understand pitch and significantly aid in music learning and performance. However, Kodály hand signs have distinctive features, such as the ability to indicate key changes or chords using both hands and to clearly represent accidentals. These features enable the effective use of Kodály hand signs. In this paper, we aim to investigate the changes in recognition rates according to the complexity of scales by creating a device for learning Kodály hand signs, teaching simple Do-Re-Mi scales, and then gradually increasing the complexity of the scales and teaching complex scales and children's songs (such as "May Had A Little Lamb"). The learning device utilizes accelerometer and bending sensors. The accelerometer detects the tilt of the hand, while the bending sensor detects the degree of bending in the fingers. The utilized accelerometer is a 6-axis accelerometer that can also measure angular velocity, ensuring accurate data collection. The learning and performance evaluation of the Kodály learning device were conducted using Python.

Finger Directivity Recognition Algorithm using Shape Decomposition (형상분해를 이용한 손가락 방향성 인식 알고리즘)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.3
    • /
    • pp.197-201
    • /
    • 2011
  • The use of gestures provides an attractive alternate to cumbersome interfaces for human-computer devices interaction. This has motivated a very active research area concerned with computer vision-based recognition of hand gestures. The most important issues in hand gesture recognition is to recognize the directivity of finger. The primitive elements extracted to a hand gesture include in very important information on the directivity of finger. In this paper, we propose the recognition algorithm of finger directivity by using the cross points of circle and sub-primitive element. The radius of circle is increased from minimum radius including main-primitive element to it including sub-primitive elements. Through the experiment, we demonstrated the efficiency of proposed algorithm.

MultiView-Based Hand Posture Recognition Method Based on Point Cloud

  • Xu, Wenkai;Lee, Ick-Soo;Lee, Suk-Kwan;Lu, Bo;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2585-2598
    • /
    • 2015
  • Hand posture recognition has played a very important role in Human Computer Interaction (HCI) and Computer Vision (CV) for many years. The challenge arises mainly due to self-occlusions caused by the limited view of the camera. In this paper, a robust hand posture recognition approach based on 3D point cloud from two RGB-D sensors (Kinect) is proposed to make maximum use of 3D information from depth map. Through noise reduction and registering two point sets obtained satisfactory from two views as we designed, a multi-viewed hand posture point cloud with most 3D information can be acquired. Moreover, we utilize the accurate reconstruction and classify each point cloud by directly matching the normalized point set with the templates of different classes from dataset, which can reduce the training time and calculation. Experimental results based on posture dataset captured by Kinect sensors (from digit 1 to 10) demonstrate the effectiveness of the proposed method.

A Mouse Control Method Using Hand Movement Recognition (손동작 인식을 이용한 마우스제어기법)

  • Kim, Jung-In
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1377-1383
    • /
    • 2012
  • This paper proposes a human mouse system that replaces mouse input by human hand movement. As the resolution of monitors increases, it is not quite possible, due to the resolution difference between web cameras and monitors, to place the cursor in the entire range of a monitor by simply moving the pointer which recognizes the position of the hand from the web camera. In this regard, we propose an effective method of placing the position of the mouse, without repeating the returning hand movements, in the corners of the monitor in which the user wants it to be. We also proposes the recognition method of finger movements in terms of using thumb and index finger. The measurement that we conducted shows the successful recognition rate of 97% that corroborates the effectiveness of our method.

Part-based Hand Detection Using HOG (HOG를 이용한 파트 기반 손 검출 알고리즘)

  • Baek, Jeonghyun;Kim, Jisu;Yoon, Changyong;Kim, Dong-Yeon;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.551-557
    • /
    • 2013
  • In intelligent robot research, hand gesture recognition has been an important issue. And techniques that recognize simple gestures are commercialized in smart phone, smart TV for swiping screen or volume control. For gesture recognition, robust hand detection is important and necessary but it is challenging because hand shape is complex and hard to be detected in cluttered background, variant illumination. In this paper, we propose efficient hand detection algorithm for detecting pointing hand for recognition of place where user pointed. To minimize false detections, ROIs are generated within the compact search region using skin color detection result. The ROIs are verified by HOG-SVM and pointing direction is computed by both detection results of head-shoulder and hand. In experiment, it is shown that proposed method shows good performance for hand detection.

Proposal of Camera Gesture Recognition System Using Motion Recognition Algorithm

  • Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.133-136
    • /
    • 2022
  • This paper is about motion gesture recognition system, and proposes the following improvement to the flaws of the current system: a motion gesture recognition system and such algorithm that uses the video image of the entire hand and reading its motion gesture to advance the accuracy of recognition. The motion gesture recognition system includes, an image capturing unit that captures and obtains the images of the area applicable for gesture reading, a motion extraction unit that extracts the motion area of the image, and a hand gesture recognition unit that read the motion gestures of the extracted area. The proposed application of the motion gesture algorithm achieves 20% improvement compared to that of the current system.

Vision-Based hand shape recognition for a pictorial puzzle (손 형상 인식 정보를 이용한 그림 맞추기 응용 프로그램 제어)

  • Kim, Jang-Woon;Hong, Sec-Joo;Lee, Chil-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.801-805
    • /
    • 2006
  • In this paper, we describe a system of controlling the pictorial puzzle program using information of hand shape. We extract hand region using skin color information and then principal component analysis uses centroidal profile information which comes blob of 2D appearance for hand shape recognition. This method suit hand shape recognition in real time because it extracts hand region accurately, has little computation quantity, and is less sensitive to lighting change using skin color information in complicated background. Finally, we controlled a pictorial puzzle with using recognized hand shape information. This method has good result when we make an experiment on application of pictorial puzzle. Besides, it can use so many HCI field.

  • PDF

A Study on the Hand-written Number Recognition by HMM(Hidden Markov Model) (HMM을 이용한 수기숫자 인식에 관한 연구)

  • Cho Meen Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.3
    • /
    • pp.121-125
    • /
    • 2004
  • In the most of recognizing systems of hand-written numbers. extraction of feature shape by using character elements shapes and a method of morphological analysis by using then extraction of feature shapes were usually used. In this paper, however, peculiar chain-code is used, and differential code which gets minimal value by differentiating the chain-code which is generated by the peculiar chain-code is made. We found this differential code is very successful in discriminating hand-written numbers according to the result of applying to most of the hand-written numbers. Testing recognition of hand-written numbers by HMM network. From the results, we can recognize of 96.1 percentage hand-written numbers but can not recognize extremely distorted hand-written numbers.

  • PDF

Gesture Recognition System using Motion Information (움직임 정보를 이용한 제스처 인식 시스템)

  • Han, Young-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.473-478
    • /
    • 2003
  • In this paper, we propose the gesture recognition system using a motion information from extracted hand region in complex background image. First of all, we measure entropy for the difference image between continuous frames. Using a color information that is similar to a skin color in candidate region which has high value, we extract hand region only from background image. On the extracted hand region, we detect a contour using the chain code and recognize hand gesture by applying improved centroidal profile method. In the experimental results for 6 kinds of hand gesture, unlike existing methods, we can stably recognize hand gesture in complex background and illumination changes without marker. Also, it shows the recognition rate with more than 95% for person and 90∼100% for each gesture at 15 frames/second.

Vision-based hand Gesture Detection and Tracking System (비전 기반의 손동작 검출 및 추적 시스템)

  • Park Ho-Sik;Bae Cheol-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1175-1180
    • /
    • 2005
  • We present a vision-based hand gesture detection and tracking system. Most conventional hand gesture recognition systems utilize a simpler method for hand detection such as background subtractions with assumed static observation conditions and those methods are not robust against camera motions, illumination changes, and so on. Therefore, we propose a statistical method to recognize and detect hand regions in images using geometrical structures. Also, Our hand tracking system employs multiple cameras to reduce occlusion problems and non-synchronous multiple observations enhance system scalability. In this experiment, the proposed method has recognition rate of $99.28\%$ that shows more improved $3.91\%$ than the conventional appearance method.