• Title/Summary/Keyword: Hand Gesture

Search Result 405, Processing Time 0.024 seconds

Biopolitics, Montage, and Potentialities of the Image: Giorgio Agamben and Cinema (생명정치, 몽타주, 이미지의 잠재성: 조르조 아감벤과 영화)

  • Kim, Jihoon
    • Cross-Cultural Studies
    • /
    • v.49
    • /
    • pp.59-93
    • /
    • 2017
  • This paper provides an in-depth examination of the relationship between cinema and Giorgio Agamben's aesthetics and philosophy. Intersecting Agamben's key concepts including gesture, mediality, biopolitics, historicity, and profanation with historical and aesthetic dimensions of cinema, I argue for his ambivalent view on cinema and visual media. On the one hand, Agamben linked cinema and visual media to his discussion on biopolitics and spectacle as he considered them as apparatus for capturing and controlling gestures. On the other hand, he also argued that cinema could restore the image with capacity to preserve and recuperate gestures based on his consideration of montage as cinema's key aesthetic and technical component (an operation of profanation) and his Benjaminian thought on the ways in which montage suspended linear flow of images and activated an alternative memory of them. Drawing on history of cinema and optical devices in the 19th and early 20th centuries as well as examples of found footages of filmmaking predicated upon stoppage and repetition of images, I argue that Agamben's concept of potentialities can be extended into his thought on cinema and visual media apparatuses in general.

A Robust Method for the Recognition of Dynamic Hand Gestures based on DSTW (다양한 환경에 강건한 DSTW 기반의 동적 손동작 인식)

  • Ji, Jae-Young;Jang, Kyung-Hyun;Lee, Jeong-Ho;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.92-103
    • /
    • 2010
  • In this paper, a method for the recognition of dynamic hand gestures in various backgrounds using Dynamic Space Time Warping(DSTW) algorithm is proposed. The existing method using DSTW algorithm compares multiple candidate hand regions detected from every frame of the query sequence with the model sequences in terms of the time. However the existing method can not exactly recognize the models because a false path can be generated from the candidates including not-hand regions such as background, elbow, and so on. In order to solve this problem, in this paper, we use the invariant moments extracted from the candidate regions of hand and compare the similarity of invariant moments among candidate regions. The similarity is utilized as a weight and the corresponding value is applied to the matching cost between the model sequence and the query sequence. Experimental results have shown that the proposed method can recognize the dynamic hand gestures in the various backgrounds. Moreover, the recognition rate has been improved by 13%, compared with the existing method.

Finger Counting Algorithm in the Hand with Stuck Fingers (붙어 있는 손가락을 가진 손에서 손가락 개수 알고리즘)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1892-1897
    • /
    • 2017
  • This paper proposes a finger counting algorithm for a hand with stuck fingers. The proposed algorithm is based on the fact that straight line type shadows are inevitably generated between fingers. It divides the hand region into the thumb region and the four fingers region for effective shadow detection, and generates an edge image in each region. Projection curves are generated by appling a line detection and a projection technique to each edge image, and the peaks of the curves are detected as candidates for finger shadows. And then peaks due to finger shadows are extracted from them and counted. In the finger counting experiment on hand images expressing various shapes with stuck fingers, the counting success rate is from 83.3% to 100% according to the number of fingers, and 93.1% on the whole. It also shows that if hand images are generated under controlled conditions, the failure cases can be sufficiently improved.

Robust Hand Region Extraction Using a Joint-based Model (관절 기반의 모델을 활용한 강인한 손 영역 추출)

  • Jang, Seok-Woo;Kim, Sul-Ho;Kim, Gye-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • Efforts to utilize human gestures to effectively implement a more natural and interactive interface between humans and computers have been ongoing in recent years. In this paper, we propose a new algorithm that accepts consecutive three-dimensional (3D) depth images, defines a hand model, and robustly extracts the human hand region based on six palm joints and 15 finger joints. Then, the 3D depth images are adaptively binarized to exclude non-interest areas, such as the background, and accurately extracts only the hand of the person, which is the area of interest. Experimental results show that the presented algorithm detects only the human hand region 2.4% more accurately than the existing method. The hand region extraction algorithm proposed in this paper is expected to be useful in various practical applications related to computer vision and image processing, such as gesture recognition, virtual reality implementation, 3D motion games, and sign recognition.

A Study on Comparative Experiment of Hand-based Interface in Immersive Virtua Reality (몰입형 가상현실에서 손 기반 인터페이스의 비교 실험에 관한 연구)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This study compares hand-based interfaces to improve a user's virtual reality (VR) presence by enhancing user immersion in VR interactions. To provide an immersive experience, in which users can more directly control the virtual environment and objects within that environment using their hands and, to simultaneously minimize the device burden on users using immersive VR systems, we designed two experimental interfaces (hand motion recognition sensor- and controller-based interactions). Hand motion recognition sensor-based interaction reflects accurate hand movements, direct gestures, and motion representations in the virtual environment, and it does not require using a device in addition to the VR head mounted display (HMD). Controller-based interaction designs a generalized interface that maps the gesture to the controller's key for easy access to the controller provided with the VR HMD. The comparative experiments in this study confirm the convenience and intuitiveness of VR interactions using the user's hand.

Implementation of Real-time Recognition System for Korean Sign Language (한글 수화의 실시간 인식 시스템의 구현)

  • Han Young-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.85-93
    • /
    • 2005
  • In this paper, we propose recognition system which tracks the unmarked hand of a person performing sign language in complex background. First of all, we measure entropy for the difference image between continuous frames. Using a color information that is similar to a skin color in candidate region which has high value, we extract hand region only from background image. On the extracted hand region, we detect a contour and recognize sign language by applying improved centroidal profile method. In the experimental results for 6 kinds of sing language movement, unlike existing methods, we can stably recognize sign language in complex background and illumination changes without marker. Also, it shows the recognition rate with more than 95% for person and $90\sim100%$ for each movement at 15 frames/second.

  • PDF

Implementation and Design of Virtual Input System Using Realtime Recognition (실시간 인식기술을 이용한 가상입력시스템 설계 및 구현)

  • Kim, Yong-Soo;Han, Pan-Am
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.535-540
    • /
    • 2007
  • The hand recognition technique is widely used to the economic input method for user interfacing environment. However, the most of the techniques have the restricted with recognize that only a fixed background and a regular pattern. This restriction character has brought a difficult problem to apply at variable application class and to process restriction environment. In this paper, we propose a virtual input system that extracting about hand region information that is not restricted by background image and also that can be followed the location information. This research could be used some system demanded by input of a person such as control system at airport and pavilion and economic virtual input system in class of industrial computer and various kinds control-system.

  • PDF

Hand Interface using Intelligent Recognition for Control of Mouse Pointer (마우스 포인터 제어를 위해 지능형 인식을 이용한 핸드 인터페이스)

  • Park, Il-Cheol;Kim, Kyung-Hun;Kwon, Goo-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1060-1065
    • /
    • 2011
  • In this paper, the proposed method is recognized the hands using color information with input image of the camera. It controls the mouse pointer using recognized hands. In addition, specific commands with the mouse pointer is designed to perform. Most users felt uncomfortable since existing interaction multimedia systems depend on a particular external input devices such as pens and mouse However, the proposed method is to compensate for these shortcomings by hand without the external input devices. In experimental methods, hand areas and backgrounds are separated using color information obtaining image from camera. And coordinates of the mouse pointer is determined using coordinates of the center of a separate hand. The mouse pointer is located in pre-filled area using these coordinates, and the robot will move and execute with the command. In experimental results, the recognition of the proposed method is more accurate but is still sensitive to the change of color of light.

Detection Accuracy Improvement of Hang Region using Kinect (키넥트를 이용한 손 영역 검출의 정확도 개선)

  • Kim, Heeae;Lee, Chang Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2727-2732
    • /
    • 2014
  • Recently, the researches of object tracking and recognition using Microsoft's Kinect are being actively studied. In this environment human hand detection and tracking is the most basic technique for human computer interaction. This paper proposes a method of improving the accuracy of the detected hand region's boundary in the cluttered background. To do this, we combine the hand detection results using the skin color with the extracted depth image from Kinect. From the experimental results, we show that the proposed method increase the accuracy of the hand region detection than the method of detecting a hand region with a depth image only. If the proposed method is applied to the sign language or gesture recognition system it is expected to contribute much to accuracy improvement.

Robust Hand-Region Detecting Based On The Structure (환경 변화에 강인한 구조 기반 손 영역 탐지)

  • Lim, Kyoung-Jin;Jeon, Mi-Yeon;Hong, Rok-Ki;Seo, Seong-Won;Shin, Mi-Hae;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.389-392
    • /
    • 2010
  • In this paper, it presents to detect location using structural information of hand from the input color images on Webcam and to recognize hand gestures. In this system, based on the skin color, the image changes a binary number and labels. Within each labeled area, we can find the Maximum Inscribed Circle using Voronoi Diagram. This circle can find the center of hand. And the circle extracts hand region from analyzing the ellipse elements to relate Maximum Inscribed Circle. We use the Maximum Inscribed Circle and the ellipse elements as characteristic of hand gesture recognition. In various environments, we cannot recognize the object that have similar colors like the background colors. But the proposed algorithm has the advantage that can be effectively eliminated about it.

  • PDF