• Title/Summary/Keyword: Hand Gesture

Search Result 405, Processing Time 0.026 seconds

An Implementation of Real-Time Numeral Recognizer Based on Hand Gesture Using Both Gradient and Positional Information (기울기와 위치 정보를 이용한 손동작기반 실시간 숫자 인식기 구현)

  • Kim, Ji-Ho;Park, Yang-Woo;Han, Kyu-Phil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.199-204
    • /
    • 2013
  • An implementation method of real-time numeral recognizer based on gesture is presented in this paper for various information devices. The proposed algorithm steadily captures the motion of a hand on 3D open space with the Kinect sensor. The captured hand motion is simplified with PCA, in order to preserve the trace consistency and to minimize the trace variations due to noises and size changes. In addition, we also propose a new HMM using both the gradient and the positional features of the simplified hand stroke. As the result, the proposed algorithm has robust characteristics to the variations of the size and speed of hand motion. The recognition rate is increased up to 30%, because of this combined model. Experimental results showed that the proposed algorithm gives a high recognition rate about 98%.

Korean /l/-flapping in an /i/-/i/ context

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.151-163
    • /
    • 2015
  • In this study, we aim to describe kinematic characteristics of Korean /l/-flapping in two speech rates (fast vs. comfortable). Production data was collected from seven native speakers of Seoul Korean (four females and three males) using electromagnetic midsagittal articulometry (EMMA), which provided two dimensional data on the x-y plane. We examined kinematic properties of the vertical/horizontal tongue tip gesture, the vertical/horizontal (rear) tongue body gesture, and the jaw gesture in an /i/-/i/ context. Gestural landmarks of the vertical tongue tip gesture are directly measured. This serves as the actual anchoring time points to which relevant measures of other trajectories referred. The study focuses on velocity profiles, closing/opening spatiotemporal properties, constriction duration, and constriction minima were analyzed. The results are summarized as follows. First, gradiently distributed spatiotemporal values of the vertical tongue tip gesture were on a continuum. This shows more of a reduction in fast speech rate, but no single instance of categorical reduction (deletion). Second, Korean /l/-flapping predominantly exhibited a backward sliding tongue tip movement, in 83% of production, which is apparently distinguished from forward sliding movement in English. Lastly, there was an indication of vocalic reduction in fast rate, truncating spatial displacement of the jaw and the tongue body, although we did not observe positional variations with speech rate. The present study shows that Korean /l/-flapping is characterized by mixed articulatory properties with respect to flapping sounds of other languages such as English and Xiangxiang Chinese. Korean /l/ flapping demonstrates a language-universal property, such as the gradient nature of its flapping sounds that is compatible with other languages. On the other hand, Korean /l/-flapping also shows a language-particular property, particularly distinguished from English, in that a backward gliding movement occurs during the tongue tip closing movement. Although, there was no vocalic reduction in V2 observed in terms of jaw and tongue body height, spatial displacement of these articulators still suggests truncation in fast speech rate.

Development of a Hand~posture Recognition System Using 3D Hand Model (3차원 손 모델을 이용한 비전 기반 손 모양 인식기의 개발)

  • Jang, Hyo-Young;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.219-221
    • /
    • 2007
  • Recent changes to ubiquitous computing requires more natural human-computer(HCI) interfaces that provide high information accessibility. Hand-gesture, i.e., gestures performed by one 'or two hands, is emerging as a viable technology to complement or replace conventional HCI technology. This paper deals with hand-posture recognition. Hand-posture database construction is important in hand-posture recognition. Human hand is composed of 27 bones and the movement of each joint is modeled by 23 degrees of freedom. Even for the same hand-posture,. grabbed images may differ depending on user's characteristic and relative position between the hand and cameras. To solve the difficulty in defining hand-postures and construct database effective in size, we present a method using a 3D hand model. Hand joint angles for each hand-posture and corresponding silhouette images from many viewpoints by projecting the model into image planes are used to construct the ?database. The proposed method does not require additional equations to define movement constraints of each joint. Also using the method, it is easy to get images of one hand-posture from many vi.ewpoints and distances. Hence it is possible to construct database more precisely and concretely. The validity of the method is evaluated by applying it to the hand-posture recognition system.

  • PDF

Hand Gesture Recognition Using Shape Decomposition (형상 분해를 이용한 손동작 인식)

  • Choi, Junyeong;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.223-224
    • /
    • 2010
  • 본 논문에서는 형상 분해(Shape Decomposition)를 이용한 손동작 인식 방법을 제안한다. 형상 분해 방법을 손동작 인식에 적용함으로써 다양한 동작에 대해서 유연한 인식이 가능하며, 기존의 형상 분해 방법을 손 형상 분해에 적합하게 효율적으로 개선함으로써 실시간 연산이 가능하도록 하였다.

  • PDF

Hidden Markov Model for Gesture Recognition (제스처 인식을 위한 은닉 마르코프 모델)

  • Park, Hye-Sun;Kim, Eun-Yi;Kim, Hang-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.17-26
    • /
    • 2006
  • This paper proposes a novel hidden Markov model (HMM)-based gesture recognition method and applies it to an HCI to control a computer game. The novelty of the proposed method is two-fold: 1) the proposed method uses a continuous streaming of human motion as the input to the HMM instead of isolated data sequences or pre-segmented sequences of data and 2) the gesture segmentation and recognition are performed simultaneously. The proposed method consists of a single HMM composed of thirteen gesture-specific HMMs that independently recognize certain gestures. It takes a continuous stream of pose symbols as an input, where a pose is composed of coordinates that indicate the face, left hand, and right hand. Whenever a new input Pose arrives, the HMM continuously updates its state probabilities, then recognizes a gesture if the probability of a distinctive state exceeds a predefined threshold. To assess the validity of the proposed method, it was applied to a real game, Quake II, and the results demonstrated that the proposed HMM could provide very useful information to enhance the discrimination between different classes and reduce the computational cost.

Virtual Environment Interfacing based on State Automata and Elementary Classifiers (상태 오토마타와 기본 요소분류기를 이용한 가상현실용 실시간 인터페이싱)

  • Kim, Jong-Sung;Lee, Chan-Su;Song, Kyung-Joon;Min, Byung-Eui;Park, Chee-Hang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3033-3044
    • /
    • 1997
  • This paper presents a system which recognizes dynamic hand gesture for virtual reality (VR). A dynamic hand gesture is a method of communication for human and computer who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the produced by two persons with their hands may not have the same numerical values where obtained through electronic sensors. To recognize meaningful gesture from continuous gestures which have no token of beginning and end, this system segments current motion states using the state automata. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line pattern recognition.

  • PDF

Gesture Control Gaming for Motoric Post-Stroke Rehabilitation

  • Andi Bese Firdausiah Mansur
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.37-43
    • /
    • 2023
  • The hospital situation, timing, and patient restrictions have become obstacles to an optimum therapy session. The crowdedness of the hospital might lead to a tight schedule and a shorter period of therapy. This condition might strike a post-stroke patient in a dilemma where they need regular treatment to recover their nervous system. In this work, we propose an in-house and uncomplex serious game system that can be used for physical therapy. The Kinect camera is used to capture the depth image stream of a human skeleton. Afterwards, the user might use their hand gesture to control the game. Voice recognition is deployed to ease them with play. Users must complete the given challenge to obtain a more significant outcome from this therapy system. Subjects will use their upper limb and hands to capture the 3D objects with different speeds and positions. The more substantial challenge, speed, and location will be increased and random. Each delegated entity will raise the scores. Afterwards, the scores will be further evaluated to correlate with therapy progress. Users are delighted with the system and eager to use it as their daily exercise. The experimental studies show a comparison between score and difficulty that represent characteristics of user and game. Users tend to quickly adapt to easy and medium levels, while high level requires better focus and proper synchronization between hand and eye to capture the 3D objects. The statistical analysis with a confidence rate(α:0.05) of the usability test shows that the proposed gaming is accessible, even without specialized training. It is not only for therapy but also for fitness because it can be used for body exercise. The result of the experiment is very satisfying. Most users enjoy and familiarize themselves quickly. The evaluation study demonstrates user satisfaction and perception during testing. Future work of the proposed serious game might involve haptic devices to stimulate their physical sensation.

Human-Computer Natur al User Inter face Based on Hand Motion Detection and Tracking

  • Xu, Wenkai;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.501-507
    • /
    • 2012
  • Human body motion is a non-verbal part for interaction or movement that can be used to involves real world and virtual world. In this paper, we explain a study on natural user interface (NUI) in human hand motion recognition using RGB color information and depth information by Kinect camera from Microsoft Corporation. To achieve the goal, hand tracking and gesture recognition have no major dependencies of the work environment, lighting or users' skin color, libraries of particular use for natural interaction and Kinect device, which serves to provide RGB images of the environment and the depth map of the scene were used. An improved Camshift tracking algorithm is used to tracking hand motion, the experimental results show out it has better performance than Camshift algorithm, and it has higher stability and accuracy as well.