Hidden Markov Model for Gesture Recognition

제스처 인식을 위한 은닉 마르코프 모델

  • Park, Hye-Sun (Dept. of Computer Eng., Kyungpook National Univ.) ;
  • Kim, Eun-Yi (Dept. of Internet and Multimedia Engineering, NITRI, Konkuk Univ.) ;
  • Kim, Hang-Joon (Dept. of Computer Eng., Kyungpook National Univ.)
  • 박혜선 (경북대학교 컴퓨터공학과) ;
  • 김은이 (건국대학교 인터넷미디어학부) ;
  • 김항준 (경북대학교 컴퓨터공학과)
  • Published : 2006.01.01

Abstract

This paper proposes a novel hidden Markov model (HMM)-based gesture recognition method and applies it to an HCI to control a computer game. The novelty of the proposed method is two-fold: 1) the proposed method uses a continuous streaming of human motion as the input to the HMM instead of isolated data sequences or pre-segmented sequences of data and 2) the gesture segmentation and recognition are performed simultaneously. The proposed method consists of a single HMM composed of thirteen gesture-specific HMMs that independently recognize certain gestures. It takes a continuous stream of pose symbols as an input, where a pose is composed of coordinates that indicate the face, left hand, and right hand. Whenever a new input Pose arrives, the HMM continuously updates its state probabilities, then recognizes a gesture if the probability of a distinctive state exceeds a predefined threshold. To assess the validity of the proposed method, it was applied to a real game, Quake II, and the results demonstrated that the proposed HMM could provide very useful information to enhance the discrimination between different classes and reduce the computational cost.

본 논문에서는 은닉 마르코프 모델 (HMM: hidden Markov model)을 이용한 제스처 인식 방법을 제안하고, 이를 게임 시스템의 인터페이스로 적용한 사례를 소개한다. 제안된 방법은 다음의 두 가지 특징을 가진다. 첫 번째는 사전에 분할된 데이터 열을 입력으로 사용하는 기존의 방법과는 달리, 제안된 방법은 카메라로부터 입력되는 비디오 스트림을 HMM의 입력으로 사용한다는 것이다. 두 번째는 제안된 HMM은 제스처의 분할과 인식을 동시에 수행한다는 것이다. 제안된 방법에서 사용자의 제스처는 13개의 제스처들을 인식하는 13개의 specific-HMM들을 결합하는 하나의 통합된 HMM을 통해 인식된다. 제안된 HMM은 사용자의 머리와 양손의 2D-위치 좌표로 구성된 포즈 심볼들의 열을 입력받는다. 그리고 새로운 포즈가 입력될 때마다, HMM의 상태 확률 값을 갱신한다. 그때, 만약 특정 상태의 확률 값이 미리 정해둔 임계치보다 큰 경우, 그 특정 상태를 포함하고 있는 제스처로 인식한다 제안된 방법의 정당성을 입증하기 위하여, 제안된 방법은 Quake II라는 컴퓨터 게임에 적용되었다. 실험결과는 제안된 방법이 높은 인식 정확률과, 계산 시간을 확연하게 감소시킬 수 있었음을 보여주었다.

Keywords

References

  1. T. Frantti, S. Kallio, Expert system for gesture recognition in terminal's user interface, Expert Systems with Applicaiions, Vol. 26, 189-202 (2004) https://doi.org/10.1016/S0957-4174(03)00134-9
  2. H. Kang, C.W. Lee, K lung, Recognition-based gesture spotting in video games, Pattern Recognition Letters, Vol. 25, 1701-1714, (2004) https://doi.org/10.1016/j.patrec.2004.06.016
  3. W.N. Chan, S. Ranganath, Real-time gesture recogrution system and application, Image and Vision Computing, Vol. 20, 993-1007, (2002) https://doi.org/10.1016/S0262-8856(02)00113-0
  4. P. Marco, Vision-based user interlaces: methods and applications, International Journal of Human-Computer Studies, Vol. 57, 27-73, (2002) https://doi.org/10.1006/ijhc.2002.1012
  5. K. Oka, Y. Sato, H Koike, Real-time tracking of multiple fingertips and gesture recognition for augmented desk interface systems, Automatic Face and Gesture Recognition, 411-416, (2002) https://doi.org/10.1109/AFGR.2002.1004191
  6. H.S. Yoon, J. Soh, Y.J. Bae, S.Y. Yang, Hand gesture recognition using combined features of location, angle and velocity, Pattern Recognition, Vol. 34, 1491-1501, (2001) https://doi.org/10.1016/S0031-3203(00)00096-0
  7. L. Gupta, S. Ma, Gesture-based interaction and communication: automated classification of hand gesture contours, IEEE Transactions on Systems, Man and Cybernetics, Part C, 114-120, (2001) https://doi.org/10.1109/5326.923274
  8. I. Cohen, N. Sebe, A. Garg, L.S. Chen, S.H Thomas, Facial expression recognition from video sequences: temporal and static modeling, Computer Vision and Image Understanding, Vol. 91, 160-187, (2003) https://doi.org/10.1016/S1077-3142(03)00081-X
  9. T. Otsuka, J. Ohya, An HMM-based approach for off-line unconstrained handwritten word modeling and recognition, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 21, 752-760, (1999) https://doi.org/10.1109/34.784288
  10. F. Quek, Toward a vision-based human gesture interface, Conf. on Virtual Reality Software Technol., 17-31, (1994)
  11. A. Kendon, Current issues in the study of gesture, The Biological Foundation of Gestures: Motor and Semiotic Aspects. Lawrence Erlbaum Associate, 23-47, (1986)
  12. H.K. Lee, J.H. Kim, An HMM-based threshold model approach for gesture recognition, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 21, 961-973, (1999) https://doi.org/10.1109/34.799904