• Title/Summary/Keyword: Hand Fingers

Search Result 289, Processing Time 0.023 seconds

Hand Feature Extraction Algorithm Using Curvature Analysis For Recognition of Various Hand Gestures (다양한 손 제스처 인식을 위한 곡률 분석 기반의 손 특징 추출 알고리즘)

  • Yoon, Hong-Chan;Cho, Jin-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.13-20
    • /
    • 2015
  • In this paper, we propose an algorithm that can recognize not only the number of stretched fingers but also determination of attached fingers for extracting features required for hand gesture recognition. The proposed algorithm detects the hand area in the input image by the skin color range filter based on a color model and labeling, and then recognizes various hand gestures by extracting the number of stretched fingers and determination of attached fingers using curvature information extracted from outlines and feature points. Experiment results show that the recognition rate and the frame rate are similar to those of the conventional algorithm, but the number of gesture cases that can be defined by the extracted characteristics is about four times higher than the conventional algorithm, so that the proposed algorithm can recognize more various gestures.

A Study on Grasping Control of Robotic Hand Fingers (로봇 핸드핑거의 파지제어에 관한 연구)

  • Shim, Byoung-Kyun;Jung, Yang-Guen;Park, In-Man;hwang, Won-Jun;Kang, Un-Wook;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.141-145
    • /
    • 2013
  • This paper is the development of industrial robotic hand system and the design methods of industrial robot hand that can mimic human fingers motion. In order to overcome problems incurred during the reduction of the mobility, this study focuses on analyzing human hand structure and finger movements from an anatomical point of view. As a result, distinctive features that improve the discovered stability in constraints for range of motion in the fingers is reflected in this design concept. A 4-bar Linkage is used in robot finger structure. Lastly, there were experiments to inspect the developed robot hands performance. The developed robot hand has many potential applications and can be in many different fields.

Development of Force Sensors for the Fingers of an Intelligent Robot's Hand (지능형 로봇손을 위한 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • This paper describes a design and manufacture of a two-axis force sensor and a single-axis force sensor for the fingers of an intelligent robot's hand. The robot's finger is composed of a two-axis force sensor, a first knuckle, a single-axis force sensor, a second knuckle, a spring, a motor of first knuckle, a motor of second knuckle, and so on. The two-axis force sensor attached to the first knuckle and the single-axis force sensor attached to the second knuckle were designed and manufactured, and the characteristics test of two sensors was carried out. As a test results, the interference error of the two-axis force sensor was less than 0.68%, the repeatability error of each sensor was less than 0.02%, and then the non-linearity was less than 0.03%. It is thought that the sensors can be used for the fingers of the intelligent robot's hand for rehabilitation exercise of finger patients.

A study on Design and Kinematics Analysis of Robot Hand Fingers (로봇핸드 핑거의 설계 및 운동학적 해석에 관한 연구)

  • Won, Jong-Bum;Ha, Eon-Tae;Kim, Byung-Chang;Cho, Sang-yeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.231-240
    • /
    • 2015
  • In this paper, it was presented to design and analyze the kinematics of grasping a rigid object by means of multi-degrees-of-freedom hand fingers. It is shown firstly that a set of kinematic equation describing dynamics system of the arm and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It has been presented secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this research, the control method for static stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the kinematic grasping of the hand fingers of robot.

MPEG-U-based Advanced User Interaction Interface Using Hand Posture Recognition

  • Han, Gukhee;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.267-273
    • /
    • 2016
  • Hand posture recognition is an important technique to enable a natural and familiar interface in the human-computer interaction (HCI) field. This paper introduces a hand posture recognition method using a depth camera. Moreover, the hand posture recognition method is incorporated with the Moving Picture Experts Group Rich Media User Interface (MPEG-U) Advanced User Interaction (AUI) Interface (MPEG-U part 2), which can provide a natural interface on a variety of devices. The proposed method initially detects positions and lengths of all fingers opened, and then recognizes the hand posture from the pose of one or two hands, as well as the number of fingers folded when a user presents a gesture representing a pattern in the AUI data format specified in MPEG-U part 2. The AUI interface represents a user's hand posture in the compliant MPEG-U schema structure. Experimental results demonstrate the performance of the hand posture recognition system and verified that the AUI interface is compatible with the MPEG-U standard.

Tendon-driven Adaptive Robot Hand (와이어 기반의 적응형 로봇 핸드)

  • Yu, Hong-Seon;Kim, Min-Cheol;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.258-263
    • /
    • 2014
  • An adaptive robot hand (AR-Hand) has a stable grasp of different objects in unstructured environments. In this study, we propose an AR-Hand based on a tendon-driven mechanism which consists of 4 fingers and 12 DOFs. It weighs 0.5 kg and can grasp an object up to 1 kg. This hand based on the adaptive grasp mechanism is able to provide a stable grasp without a complex control algorithm or sensor system. The fingers are driven by simple tendon structures with each finger capable of adaptively grasping the objects. This paper presents a method to decide the joint stiffness. The adaptive grasping is verified by various grasping experiments involving objects with different shapes and sizes.

High-Resolution Finger MRI: What Should You Look for in Trauma of the Fingers? (손가락의 고해상도 자기공명영상: 외상성 병변에서 무엇을 봐야하는가?)

  • Kyoung Yeon Lee;Jiwon Rim;Jung-Ah Choi;Eun Kyung Khil
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1031-1046
    • /
    • 2023
  • The fingers are among the most commonly injured structures in traumatic injuries resulting from sports and work. Finger injuries encompass a broad spectrum of injuries to bone and soft tissues, including tendons, ligaments, and cartilage. The high resolution of 3T MRI with dedicated surface coils allows for optimal assessment of the intricate soft tissue structures of the fingers. There have been several reports on detailed MRI features of the basic anatomy and common pathological findings of the finger and hand. Understanding the normal anatomy and familiarization with common traumatic lesions of the ligaments, tendons, and pulleys of the fingers on high-resolution MRI will allow radiologists to perform accurate preoperative evaluations of traumatic hand lesions. The purpose of this study is to review the normal hand anatomy and common traumatic lesions of the finger on high-resolution MRI and correlate them with surgical findings.

Evaluation of the Contributions of Individual Finger Forces in Various Submaximal Grip Force Exertion Levels

  • Kong, Yong-Ku;Lee, Inseok;Lee, Juhee;Lee, Kyungsuk;Choi, Kyeong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.361-370
    • /
    • 2016
  • Objective:The aim of this study is to evaluate contributions of individual finger forces associated with various levels of submaximal voluntary contraction tasks. Background: Although many researches for individual finger force have been conducted, most of the studies mainly focus on the maximal voluntary contraction. However, Information concerning individual finger forces during submaximal voluntary contraction is also very important for developing biomechanical models and for designing hand tools, work equipment, hand prostheses and robotic hands. Due to these reasons, studies on the contribution of individual finger force in submaximal grip force exertions should be fully considered. Method: A total of 60 healthy adults without any musculoskeletal disorders in the upper arms participated in this study. The young group (mean: 23.7 yrs) consisted of 30 healthy adults (15 males and 15 females), and the elderly group (mean: 75.2 yrs) was also composed of 30 participants (15 males and 15 females). A multi-Finger Force Measurement (MFFM) System developed by Kim and Kong (2008) was applied in order to measure total grip strength and individual finger forces. The participants were asked to exert a grip force attempting to minimize the difference between the target force and their exerted force for eight different target forces (5, 15, 25, 35, 45, 55, 65, and 75% MVCs). These target forces based on the maximum voluntary contraction, which were obtained from each participant, were randomly assigned in this study. Results: The contributions of middle and ring fingers to the total grip force represented an increasing trend as the target force level increased. On the other hand, the contributions of index and little fingers showed a decreasing trend as the target force level increased. In particular, Index finger exerted the largest contribution to the total grip force, followed by middle, ring and little fingers in the case of the smallest target force level (5% MVC), whereas middle finger showed the largest contribution, followed by ring, index and little fingers at the largest target force levels (65 and 75% MVCs). Conclusion: Each individual finger showed a different contribution pattern to the grip force exertion. As the target force level increase from 5 to 75% MVC, the contributions of middle and ring fingers showed an increasing trend, whereas the contributions of index and little fingers represented a decreasing trend in this study. Application: The results of this study can be useful information when designing robotic hands, hand tools and work equipment. Such information would be also useful when abnormal hand functions are evaluated.

Analysis of Changes in Hand Length Dimensions by Hand Motion for Glove Design (장갑 설계 적용을 위한 손동작에 따른 손체표의 길이변화 분석)

  • Kwon, O-Chae;Sun, Mee-Sun;Jung, Ki-Hyo;Lee, Min-Jeong;Yeon, Soo-Min;You, Hee-Cheon;Kim, Hee-Eun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.1-5
    • /
    • 2005
  • A glove design which reflects the changes in hand surface by hand motion can reduce the undesirable effects of use of gloves on hand performance. The present study examined changes in hand length dimensions due to hand motion and identified significant factors affecting the length changes. Recruiting 120 males and females in their 20s and 30s having various hand lengths, this study measured 10 hand length dimensions, defined at 2 hand areas(phalangeal and metacarpal areas) for 5 digits, when the hand is stretched and in fist, and then calculated the percentage of length increase for each dimension. ANOVA and simple-effect analyses showed the length change percentages were mainly different depending on digit and hand area: 111-127% at the phalangeal area and 112-116% at the metacarpal area. The length change percentages of the index, middle, ring, and little fingers in the phalangeal area ascended in order and showed a high correlation(r = 0.94)with the ranges of motion of the fingers.

A study on hand growth of Korean adolescent boys from 14 to 19 years (한국 남자 청소년(14~19세)의 손 치수 성장 경향에 관한 연구)

  • Kim, Hyunsook;Chun, Jongsuk
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.5
    • /
    • pp.702-711
    • /
    • 2014
  • This study was performed to investigate the hand size growth of Korean adolescents boys. Subjects were between 14 and 19 years (n=352). We collected the right hand size data of 19 measurements from each subject using 3D hand scanner. The total 26 hand measurements were analyzed including seven calculated measurements. Subjects were divided into three age groups (early, middle and late). Their hand size were compared. The results showed that all hand length measurements were significantly difference among age groups. Adolescent boys hands were sharply grown at age 16 years old. The hand dimensions of middle age group were compared with twenties men (n=215). There were significant differences between two groups. The middle age adolescents' hands were shorter and thicker than twenties men. Subjects were also divided by weight and height. Weight and height was closely related to hand size. The heavier and taller subjects had the thicker hand. Their fingers were longer than others. The adolescent boys and twenties men who were taller than the twenties' average height (173.4cm) were compared. Twenties men's hands were longer and thinner than that of adolescent boys. These results imply that the male adolescent hands grow short and thick in the adolescent period. Fingers continuously grow up as a long and thin shape after adolescent period.