• 제목/요약/키워드: Hand Detection

검색결과 734건 처리시간 0.024초

A Vision-Based Method to Find Fingertips in a Closed Hand

  • Chaudhary, Ankit;Vatwani, Kapil;Agrawal, Tushar;Raheja, J.L.
    • Journal of Information Processing Systems
    • /
    • 제8권3호
    • /
    • pp.399-408
    • /
    • 2012
  • Hand gesture recognition is an important area of research in the field of Human Computer Interaction (HCI). The geometric attributes of the hand play an important role in hand shape reconstruction and gesture recognition. That said, fingertips are one of the important attributes for the detection of hand gestures and can provide valuable information from hand images. Many methods are available in scientific literature for fingertips detection with an open hand but very poor results are available for fingertips detection when the hand is closed. This paper presents a new method for the detection of fingertips in a closed hand using the corner detection method and an advanced edge detection algorithm. It is important to note that the skin color segmentation methodology did not work for fingertips detection in a closed hand. Thus the proposed method applied Gabor filter techniques for the detection of edges and then applied the corner detection algorithm for the detection of fingertips through the edges. To check the accuracy of the method, this method was tested on a vast number of images taken with a webcam. The method resulted in a higher accuracy rate of detections from the images. The method was further implemented on video for testing its validity on real time image capturing. These closed hand fingertips detection would help in controlling an electro-mechanical robotic hand via hand gesture in a natural way.

Keypoint Detection과 Annoy Tree를 사용한 2D Hand Pose Estimation (Fast Hand Pose Estimation with Keypoint Detection and Annoy Tree)

  • 이희재;강민혜
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.277-278
    • /
    • 2021
  • 최근 손동작 인식에 대한 연구들이 활발하다. 하지만 대부분 Depth 정보를 포함한3D 정보를 필요로 한다. 이는 기존 연구들이 Depth 카메라 없이는 동작하지 않는다는 한계점이 있다는 것을 의미한다. 본 프로젝트는 Depth 카메라를 사용하지 않고 2D 이미지에서 Hand Keypoint Detection을 통해 손동작 인식을 하는 방법론을 제안한다. 학습 데이터 셋으로 Facebook에서 제공하는 InterHand2.6M 데이터셋[1]을 사용한다. 제안 방법은 크게 두 단계로 진행된다. 첫째로, Object Detection으로 Hand Detection을 수행한다. 데이터 셋이 어두운 배경에서 촬영되어 실 사용 환경에서 Detection 성능이 나오지 않는 점을 해결하기 위한 이미지 합성 Augmentation 기법을 제안한다. 둘째로, Keypoint Detection으로 21개의 Hand Keypoint들을 얻는다. 실험을 통해 유의미한 벡터들을 생성한 뒤 Annoy (Approximate nearest neighbors Oh Yeah) Tree를 생성한다. 생성된 Annoy Tree들로 후처리 작업을 거친 뒤 최종 Pose Estimation을 완료한다. Annoy Tree를 사용한 Pose Estimation에서는 NN(Neural Network)을 사용한 것보다 빠르며 동등한 성능을 냈다.

  • PDF

컬러 시각을 이용한 사람 손의 검출 (Human Hand Detection Using Color Vision)

  • 김준엽;도용태
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.28-33
    • /
    • 2012
  • The visual sensing of human hands plays an important part in many man-machine interaction/interface systems. Most existing visionbased hand detection techniques depend on the color cues of human skin. The RGB color image from a vision sensor is often transformed to another color space as a preprocessing of hand detection because the color space transformation is assumed to increase the detection accuracy. However, the actual effect of color space transformation has not been well investigated in literature. This paper discusses a comparative evaluation of the pixel classification performance of hand skin detection in four widely used color spaces; RGB, YIQ, HSV, and normalized rgb. The experimental results indicate that using the normalized red-green color values is the most reliable under different backgrounds, lighting conditions, individuals, and hand postures. The nonlinear classification of pixel colors by the use of a multilayer neural network is also proposed to improve the detection accuracy.

역 투영과 휴 모멘트를 이용한 손영역 검출 및 모양 분류 (Hand Region Detection and hand shape classification using Hu moment and Back Projection)

  • 신재선;장대식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.911-914
    • /
    • 2011
  • 손 영역을 찾는 것은 사용자 중심의 인터페이스를 제공하는 데 있어서 꼭 필요한 기술이며 이를 위해 많은 연구가 진행되어 왔다. 본 논문은 HSV 공간을 기반으로 한 역 투영 기법을 사용하여 손영역 검출을 수행하였으며, 휴 모멘트를 통해 추출된 손 영역을 분석, 손 모양 인식에 대한 방법을 제안한다. 역 투영 기법을 통해 손 영역 검출에 대한 신뢰도를 높였으며, 휴 모멘트를 통해 손모양을 구분할 수 있음을 확인하였다.

  • PDF

HOG를 이용한 파트 기반 손 검출 알고리즘 (Part-based Hand Detection Using HOG)

  • 백정현;김지수;윤창용;김동연;김은태
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.551-557
    • /
    • 2013
  • 지능형 로봇 연구 분야에 있어, 손을 이용한 제스처 인식은 매우 중요한 연구 분야로 간주 되고 있으며, 스마트 폰, 스마트 TV 등에 상용화 되어왔다. 제스처 인식에 있어, 강인한 손 검출 기술을 필수적인데, 손의 모양이 일정치 않고, 복잡한 배경이나 조명변화 아래서는 손 검출이 쉽지 않다는 어려움이 있다. 본 논문은 실내 환경에서 사용자가 가리키는 방향을 인식하기 위한 손 검출 알고리즘을 제안한다. 손 검출에 대한 오검출을 최대한 줄이기 위해, 머리-어깨 검출 결과를 기반으로 손 검색 영역을 한정시키고, 피부색을 이용해 최소한의 후보군들을 발생시켜, HOG-SVM을 이용하여 손을 검출하였다. 그리고 머리-어깨, 손 검출 결과를 통해 팔의 방향 각도를 추정하였다. 제안된 방법은 실제 실내 환경에서 추출된 영상을 통해 실험을 진행하였고, 강인한 성능을 확인하였다.

주행 로봇을 위한 단일 카메라 영상에서 손든 자세 검출 알고리즘 (Hand Raising Pose Detection in the Images of a Single Camera for Mobile Robot)

  • 권기일
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.223-229
    • /
    • 2015
  • This paper proposes a novel method for detection of hand raising poses from images acquired from a single camera attached to a mobile robot that navigates unknown dynamic environments. Due to unconstrained illumination, a high level of variance in human appearances and unpredictable backgrounds, detecting hand raising gestures from an image acquired from a camera attached to a mobile robot is very challenging. The proposed method first detects faces to determine the region of interest (ROI), and in this ROI, we detect hands by using a HOG-based hand detector. By using the color distribution of the face region, we evaluate each candidate in the detected hand region. To deal with cases of failure in face detection, we also use a HOG-based hand raising pose detector. Unlike other hand raising pose detector systems, we evaluate our algorithm with images acquired from the camera and images obtained from the Internet that contain unknown backgrounds and unconstrained illumination. The level of variance in hand raising poses in these images is very high. Our experiment results show that the proposed method robustly detects hand raising poses in complex backgrounds and unknown lighting conditions.

독립 성분 특징을 적용한 신경망을 이용한 효율적이고 안정적인 손 검출 (Effective and reliable Hand Detection Using Neural Network with ICA features)

  • 이승준;고한석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.367-369
    • /
    • 2004
  • In this paper we propose an effective and reliable hand detection method using neural network with ICA(Independent Component Analysis) Features. Many algorithms of hand detection have been proposed yet. Among them, ICA is the one of the interesting topics in image processing. ICA can not only separate mixed signals but also efficiently extract low-dimensional features in signals. ICA features are able to represent the characteristic of the images well. The object of this paper is to use effectively ICA that has above advantage. That is, by the proper number of Independent component the arithmetic speed is faster and by normalization of ICA feature the performance of detection is more reliable. For this, we adopt the algorithm, the Proportion of variance, which select the ICA feature by comparing the ratio of variance of ICA feature. By this method, we can extract the feature that is good at classifying hand and non-hand. Our experimental results show that by using ICA features, we obtained a better performance in hand detection than by only training NN on the image. And we can use hand detection system effectively and reliably by our proposal.

  • PDF

손 최장너비 기반 손바닥 영역 검출 (Palm Area Detection by Maximum Hand Width)

  • 최은창;김준연;이재원;임종관
    • 한국콘텐츠학회논문지
    • /
    • 제18권4호
    • /
    • pp.398-405
    • /
    • 2018
  • HCI 분야에서 대표적인 손 제스처 인식은 IT기기의 개발과 더불어 사용자와 기기 간의 상호작용 및 정보교환을 위한 방법으로 주목받고 있다. 영상 처리를 통한 손 제스처 인식에서 손바닥 영역 검출은 처리속도 및 인식률 향상에 기여하는 핵심 처리 과정이다. 본 논문에서는 손바닥 영역 검출(palm area detection)을 위해 손과 손목을 영상 분할(image segmentation) 하는 새로운 방법을 제안한다. 손의 해부학적 특성으로 가장 넓은 폭이 발생하는 엄지와 소지의 장골 간격을 손 영상의 수평 투사 히스토그램으로 계산 후 이 간격을 지름으로 하는 원을 그려 손바닥 영역을 검출한다. 이 방법의 우수성을 검증하기 위하여 다단 형판정합(multiple stage template matching)을 사용해 10가지 손 제스처에 대해 기존 방법 4가지와 인식 성능을 비교 평가한다. 손 제스처 인식에 관련한 연구가 다양하나 손바닥 영역 검출에 특화된 성능 비교 문헌이 저조함을 강조한다.

컬러공간에 따른 영상내 사람 손 영역의 검출 성능연구 (A Study on the Performance of Human Hand Region Detection in Images According to Color Spaces)

  • 김준엽;도용태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.186-188
    • /
    • 2005
  • Hand region detection in images is an important process in many computer vision applications. It is a process that usually starts at a pixel-level, and that involves a pre-process of color space transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes for hands and non-skin classes for other parts, to increase similarity among different skin tones, and to bring a robust performance under varying illumination conditions, without any sound reasonings. In this work, we examine if the color space transformation does bring those benefits to the problem of hand region detection on a dataset of images with different hand postures, backgrounds, people, and illuminations. Results indicate that best of the color space is the normalized RGB.

  • PDF

전방 투사 인터랙티브 디스플레이를 위한 맨손 검출 (Hand Detection for Front-Projected Interactive Displays)

  • 남양희;오수진
    • 한국멀티미디어학회논문지
    • /
    • 제10권9호
    • /
    • pp.1135-1142
    • /
    • 2007
  • 전방투사형 인터랙티브 디스플레이에서는 프로젝터의 빔이 사용자의 손이나 몸에도 투사되는 특성으로 인해 보편적 칼라 추져 기법을 통한 맨 손 영역의 검출이 어렵다. 본 논문에서는 원본 영상의 칼라가 카메라 영상으로 포착되기까지 칼라의 변환 관계를 분석하여 결과를 추정함으로써, 기대치와의 차이 영역 계산을 통해 손 영역을 검출하였다. 이 때, 기존 논문의 부정확한 칼라 추정을 보완하기 위해, 프로젝터와 카메라 반응 값의 칼라 채널별 간섭현상 및 투사된 프레임 내부의 밝기 오차를 룩업테이블로 모델링 하고 맨 손 영역에 대해 유동적인 밝기 차 임계치를 적용하여 정확도를 개선하였다.

  • PDF