• Title/Summary/Keyword: Hand Detection

Search Result 734, Processing Time 0.026 seconds

A Vision-Based Method to Find Fingertips in a Closed Hand

  • Chaudhary, Ankit;Vatwani, Kapil;Agrawal, Tushar;Raheja, J.L.
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.399-408
    • /
    • 2012
  • Hand gesture recognition is an important area of research in the field of Human Computer Interaction (HCI). The geometric attributes of the hand play an important role in hand shape reconstruction and gesture recognition. That said, fingertips are one of the important attributes for the detection of hand gestures and can provide valuable information from hand images. Many methods are available in scientific literature for fingertips detection with an open hand but very poor results are available for fingertips detection when the hand is closed. This paper presents a new method for the detection of fingertips in a closed hand using the corner detection method and an advanced edge detection algorithm. It is important to note that the skin color segmentation methodology did not work for fingertips detection in a closed hand. Thus the proposed method applied Gabor filter techniques for the detection of edges and then applied the corner detection algorithm for the detection of fingertips through the edges. To check the accuracy of the method, this method was tested on a vast number of images taken with a webcam. The method resulted in a higher accuracy rate of detections from the images. The method was further implemented on video for testing its validity on real time image capturing. These closed hand fingertips detection would help in controlling an electro-mechanical robotic hand via hand gesture in a natural way.

Fast Hand Pose Estimation with Keypoint Detection and Annoy Tree (Keypoint Detection과 Annoy Tree를 사용한 2D Hand Pose Estimation)

  • Lee, Hui-Jae;Kang Min-Hye
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.277-278
    • /
    • 2021
  • 최근 손동작 인식에 대한 연구들이 활발하다. 하지만 대부분 Depth 정보를 포함한3D 정보를 필요로 한다. 이는 기존 연구들이 Depth 카메라 없이는 동작하지 않는다는 한계점이 있다는 것을 의미한다. 본 프로젝트는 Depth 카메라를 사용하지 않고 2D 이미지에서 Hand Keypoint Detection을 통해 손동작 인식을 하는 방법론을 제안한다. 학습 데이터 셋으로 Facebook에서 제공하는 InterHand2.6M 데이터셋[1]을 사용한다. 제안 방법은 크게 두 단계로 진행된다. 첫째로, Object Detection으로 Hand Detection을 수행한다. 데이터 셋이 어두운 배경에서 촬영되어 실 사용 환경에서 Detection 성능이 나오지 않는 점을 해결하기 위한 이미지 합성 Augmentation 기법을 제안한다. 둘째로, Keypoint Detection으로 21개의 Hand Keypoint들을 얻는다. 실험을 통해 유의미한 벡터들을 생성한 뒤 Annoy (Approximate nearest neighbors Oh Yeah) Tree를 생성한다. 생성된 Annoy Tree들로 후처리 작업을 거친 뒤 최종 Pose Estimation을 완료한다. Annoy Tree를 사용한 Pose Estimation에서는 NN(Neural Network)을 사용한 것보다 빠르며 동등한 성능을 냈다.

  • PDF

Human Hand Detection Using Color Vision (컬러 시각을 이용한 사람 손의 검출)

  • Kim, Jun-Yup;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • The visual sensing of human hands plays an important part in many man-machine interaction/interface systems. Most existing visionbased hand detection techniques depend on the color cues of human skin. The RGB color image from a vision sensor is often transformed to another color space as a preprocessing of hand detection because the color space transformation is assumed to increase the detection accuracy. However, the actual effect of color space transformation has not been well investigated in literature. This paper discusses a comparative evaluation of the pixel classification performance of hand skin detection in four widely used color spaces; RGB, YIQ, HSV, and normalized rgb. The experimental results indicate that using the normalized red-green color values is the most reliable under different backgrounds, lighting conditions, individuals, and hand postures. The nonlinear classification of pixel colors by the use of a multilayer neural network is also proposed to improve the detection accuracy.

Hand Region Detection and hand shape classification using Hu moment and Back Projection (역 투영과 휴 모멘트를 이용한 손영역 검출 및 모양 분류)

  • Shin, Jae-Sun;Jang, Dae-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.911-914
    • /
    • 2011
  • Detecting Hand Region is essencial technology to providing User based interface and many research has been continue. In this paper will propose Hand Region Detection method by using HSV space based on Back Projection and Hand Shape Recognition using Hu Moment. By using Back Projection, I updated reliability on Hand Region Detection by Back Projection method and, Confirmed Hand Shape could be recognized through Hu moment.

  • PDF

Part-based Hand Detection Using HOG (HOG를 이용한 파트 기반 손 검출 알고리즘)

  • Baek, Jeonghyun;Kim, Jisu;Yoon, Changyong;Kim, Dong-Yeon;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.551-557
    • /
    • 2013
  • In intelligent robot research, hand gesture recognition has been an important issue. And techniques that recognize simple gestures are commercialized in smart phone, smart TV for swiping screen or volume control. For gesture recognition, robust hand detection is important and necessary but it is challenging because hand shape is complex and hard to be detected in cluttered background, variant illumination. In this paper, we propose efficient hand detection algorithm for detecting pointing hand for recognition of place where user pointed. To minimize false detections, ROIs are generated within the compact search region using skin color detection result. The ROIs are verified by HOG-SVM and pointing direction is computed by both detection results of head-shoulder and hand. In experiment, it is shown that proposed method shows good performance for hand detection.

Hand Raising Pose Detection in the Images of a Single Camera for Mobile Robot (주행 로봇을 위한 단일 카메라 영상에서 손든 자세 검출 알고리즘)

  • Kwon, Gi-Il
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.223-229
    • /
    • 2015
  • This paper proposes a novel method for detection of hand raising poses from images acquired from a single camera attached to a mobile robot that navigates unknown dynamic environments. Due to unconstrained illumination, a high level of variance in human appearances and unpredictable backgrounds, detecting hand raising gestures from an image acquired from a camera attached to a mobile robot is very challenging. The proposed method first detects faces to determine the region of interest (ROI), and in this ROI, we detect hands by using a HOG-based hand detector. By using the color distribution of the face region, we evaluate each candidate in the detected hand region. To deal with cases of failure in face detection, we also use a HOG-based hand raising pose detector. Unlike other hand raising pose detector systems, we evaluate our algorithm with images acquired from the camera and images obtained from the Internet that contain unknown backgrounds and unconstrained illumination. The level of variance in hand raising poses in these images is very high. Our experiment results show that the proposed method robustly detects hand raising poses in complex backgrounds and unknown lighting conditions.

Effective and reliable Hand Detection Using Neural Network with ICA features (독립 성분 특징을 적용한 신경망을 이용한 효율적이고 안정적인 손 검출)

  • Lee, Seung-Joon;Ko, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.367-369
    • /
    • 2004
  • In this paper we propose an effective and reliable hand detection method using neural network with ICA(Independent Component Analysis) Features. Many algorithms of hand detection have been proposed yet. Among them, ICA is the one of the interesting topics in image processing. ICA can not only separate mixed signals but also efficiently extract low-dimensional features in signals. ICA features are able to represent the characteristic of the images well. The object of this paper is to use effectively ICA that has above advantage. That is, by the proper number of Independent component the arithmetic speed is faster and by normalization of ICA feature the performance of detection is more reliable. For this, we adopt the algorithm, the Proportion of variance, which select the ICA feature by comparing the ratio of variance of ICA feature. By this method, we can extract the feature that is good at classifying hand and non-hand. Our experimental results show that by using ICA features, we obtained a better performance in hand detection than by only training NN on the image. And we can use hand detection system effectively and reliably by our proposal.

  • PDF

Palm Area Detection by Maximum Hand Width (손 최장너비 기반 손바닥 영역 검출)

  • Choi, Eun Chang;Kim, Jun Yeon;Lee, Jae Won;Lim, Jong Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.398-405
    • /
    • 2018
  • In the HCI, hand gesture recognition is attracting attention as a method for interaction and information exchange between users and devices along with the development of IT devices. In hand gesture recognition through image processing, palm region detection is a key process contributing to improvement of processing speed and recognition rate. In this paper, we propose a new method for image segmentation between the hand and wrist for palm area detection. The anatomical characteristics of the hand are used to calculate the distance between the iliac bones of the thumb and little finger, which have the widest width, by the horizontal projection histogram of the hand image, and then the palm area is detected by drawing a circle having the width as the diameter. In order to verify the superiority of this method, multiple stage template matching is used to compare and evaluate recognition performance against the four conventional methods for 10 hand gestures. Note that the literatures to offer palm area detection performance evaluation are few although there are many studies on hand gesture recognition.

A Study on the Performance of Human Hand Region Detection in Images According to Color Spaces (컬러공간에 따른 영상내 사람 손 영역의 검출 성능연구)

  • Kim, Jun-Yup;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.186-188
    • /
    • 2005
  • Hand region detection in images is an important process in many computer vision applications. It is a process that usually starts at a pixel-level, and that involves a pre-process of color space transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes for hands and non-skin classes for other parts, to increase similarity among different skin tones, and to bring a robust performance under varying illumination conditions, without any sound reasonings. In this work, we examine if the color space transformation does bring those benefits to the problem of hand region detection on a dataset of images with different hand postures, backgrounds, people, and illuminations. Results indicate that best of the color space is the normalized RGB.

  • PDF

Hand Detection for Front-Projected Interactive Displays (전방 투사 인터랙티브 디스플레이를 위한 맨손 검출)

  • Nam, Yang-Hee;Oh, Su-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1135-1142
    • /
    • 2007
  • Front-projection type displays make it difficult to apply traditional skin color detection for human hand because the projected beam not only reaches to the screen but also to the user's hand. This paper solves this problem by modeling the distortion between original image and its final camera input. Our approach improves hand detection rate by modeling of interference effect among color channels and of intra-frame intensity and also by introducing adaptive threshold for color difference in skin region.

  • PDF