• Title/Summary/Keyword: Han river watershed

Search Result 315, Processing Time 0.025 seconds

A Study on BASINS/WinHSPF for Evaluation of Non-point Source Reduction Efficiency in the Upstream of Nam-Han River Watershed (BASINS/WinHSPF를 이용한 남한강 상류 유역의 비점오염원 저감효율평가)

  • Yoon, Chun-Gyeong;Shin, Ah-Hyun;Jung, Kwang-Wook;Jang, Jae-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.951-960
    • /
    • 2007
  • Window interface to Hydrological Simulation Program-FORTRAN (WinHSPF) developed by the United States Environmental Protection Agency (EPA) was applied to the upstream of Nam-Han river watershed to examine its applicability for loading estimates in watershed scale and to evaluate non-point source control scenarios using BMPRAC in WinHSPF. The WinHSPF model was calibrated and verified for water flow using Ministry of Construction and Transportation (MOCT, 3 stations, 2003~2005) and water qualities using Ministry of Environment (MOE, 5 station, 2000~2006). Water flow and water quality simulation results were also satisfactory over the total simulation period. But outliers were occurred in the time series data of TN and TP at some regions and periods. Therefore, it required more profit calibration process for more various parameters. As a result, all the study was performed within the expectation considering the complexity of the watershed, pollutant sources and land uses intermixed in the watershed. The estimated pollutant load for annual average about $BOD_5$, T-N and T-P respectively. Nonpoint source loading had a great portion of total pollutant loading, about 86.5~95.2%. In WinHSPF, BMPRAC was applied to evaluate non-point source control scenarios (constructed wetland, wet detention ponds and infiltration basins). All the scenarios showed efficiency of non-point source removal. Overall, the HSPF model is adequate for simulating watersheds characteristics, and its application is recommended for watershed management and evaluation of best management practices.

A Study on the Spatial Strength and Cluster Analysis at the Unit Watershed for the Management of Total Maximum Daily Loads (다변량통계분석을 이용한 수질오염총량관리 단위유역별 오염물질 배출특성 분석 - 한강수계를 중심으로 -)

  • Choi, Ok Youn;Kim, Ki Hoon;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.700-714
    • /
    • 2015
  • The characteristic of the water quality and pollutant discharge was analyzed at the units watershed of the total amount management in Han-river basin, and after classified in a similar area by multivariate statistical analysis, the main trend such as the water quality trend and pollutant discharge characteristic were analyzed. As a result of this study, the density of the pollutant at the unit watershed is not necessarily identified as discharge density, and the primary management watershed and targeted substances were analyzed depending on the operating status of the environmental infrastructure in watershed and the main pollution factor and discharge path per pollutants. As a result of cluster analysis, watersheds were classified into four groups according to discharge characteristics. It will be used when selecting target area of primary management that is appropriate to the characteristics of each river and establishing efficient water quality improvement plans.

Operation of Seom River Experimental Watershed in 2007 (2007년 섬강 시험 유역의 운영)

  • Lee, Min-Ho;Choi, Hung-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.699-702
    • /
    • 2008
  • In this study, it has observed the precipitation and stage data at each point every ten minutes for gaining the sustainable, reliable and high-quality hydrological data through operating the experimental watershed in mountainous areas such as Gyecheon located in the upstream of Seom river that is the tributary of Nam-Han river. And it has regularly surveyed the runoff and verified the reliability of data using the uncertainty analysis at the gaging station. So, this study has developed the stage-discharge curve(rating curve) and these results are expected to be used as fundamental data for analyzing the circulation of water through surveying evapotranspiration, soil moisture and level of groundwater in watershed.

  • PDF

Distribution of Coastal Ground Water Discharge from Surficial Aquifers of Major River Districts (권역별 충적층 지하수의 해안 유출량 분포)

  • Han, Soo Young;Hong, Sung Hun;Park, Namsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.1-6
    • /
    • 2006
  • Amount of coastal ground water discharge(CGD) of surficial aquifer via coastlines of Nakdong River watershed, Seomjin River watershed, Youngsan River watershed and Keum River watershed is estimated. Compared to other major hydrological components, such as evapo-transpiration and river discharge, CGD is not so large in the amount. However, it is important since coastal ground water can be developed relatively free of environmental impact on downstream area and since most of coastal areas currently suffers water shortage. Regional groundwater investigation data and assessment based on Darcy's law are used for estimating coastal groundwater discharge. In this work the amount of CGD across the coastlines of the four rivers is estimated as 1.8 billion cubic meter per year and that is about 2.3 percentage of total amount of annual precipitation. Nakdong River watershed is most appropriate region in view of developing groundwater.

A Synthesis of Unit Hydrograph by a Correlation Analysis between the Basin Characteristics and the Runoff-Characteristics - Han and Geum River Basin - (유역특성과 유출특성간의 상관관계 해석에 의한 단위유량도의 합성 - 한강 및 금강유역 -)

  • 윤용남;선우중호
    • Water for future
    • /
    • v.8 no.1
    • /
    • pp.61-79
    • /
    • 1975
  • An attempt is made to develope a scheme for synthesizing unit hydrograph for any arbitrary small watershed in the Han or Geum River basin, which can be applied in determining various sizes of design flood for flood control prijects. Stage gauging stations, seven in the Han and five in the Geun River basin with rating curves, were selected as subbasins for the analysis. Unit hydrographs of 2-hour duration were derived for several heavy storm events using the storm and the corresponding flood runoff data for each subbasin. The Clark method programmed by the Hydrologic Engineering Center, U.S. Corps of Engineers, was utilized for derivation of instantaneous unit hydrographs which were, in turn, converted into 2-hour unit hydrograph. By averaging the 2-hour unit hydrographs from several storm events a representative 2-hour unit hydrograph was determined for each subbasin and hence a separate derivation of dimensionless unit hedrograph was also possible for the Han and Geum River basins. The physiographic characteristics such as stream length, distance to the centroid of each watershed were correlated with the characteristic parameters of the derived unit hydrograph for the subbasins within two large basins. correlation analyses between the characteristic parameters were also made. These correlation analyses resulted a series of four equations and a dimensionless unit hydrograph for the two large basins, which made it possible to draw a synthetic 2-hour unitgraph for any small watershed within the Han or Geum River basin. A detailed procedure for aplying the derived method for an arbitrary basin is summarized with one sample computation for each of the two basins. A comparison of the actually derived 2-hour unit hydrogrograph and the synthesized one showed a fair agreement. A recommendation is made for the further study.

  • PDF

Runoff Characteristics of Refractory Organic Matters from South-Han River Watershed during Rainfall Event and Dry Season (남한강 지역의 건기 시, 강우 시, 난분해성 유기물질 유출 특성)

  • Gil, Kyungik;Kim, Taewon;Jung, Myung-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.306-313
    • /
    • 2011
  • In this paper, runoff characteristics of South-Han river watershed in terms of refractory organic matters were investigated. The concentrations of DOC, POC, R-DOC, R-POC in runoff and flow rates were determined by monitoring 27 times in dry season and 4 times in rainy season. The concentrations of the dissolved refractory organic matter, R-DOC was the lowest in fall and similar in the other dry seasons. The particulate refractory organic matter, R-POC showed less fluctuation than R-DOC. In summer, mass loading was the highest than other dry seasons. The concentrations of R-DOC, R-POC were showed to be affected by runoff volume. The mass loading grows higher as runoff volume gets higher.

Management Measures for the Control of Agricultural Reservoirs in Han River Watershed (한강수계 농업용저수지 관리방안)

  • Kim, Ho-Sub;Kong, Dong-Soo;Jung, Dong-Il;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.386-393
    • /
    • 2009
  • This study was carried out to assess water quality and to introduce the management measures for water quality improvement with the collected data from 87 agricultural reservoirs in Han river watershed. According to the water quality criteria (WQC) for lake based on the COD, TP, TN and chl.a concentration, 18, 16, 4 and 19 of 87 reservoirs exceed class IV, respectively. Based on the trophic state index (TSI) with chl.a concentration, 51 of selected reservoirs appeared to be eutrophic. Phosphorus was limiting nutrient on algal growth in 58 reservoirs. TP, chl.a and COD concentration in 23 of 49 agricultural reservoirs with chl.a concentration ${\geq}25{\mu}g/L$ and eutrophic exceed class IV by WQC. Also, the mean depth in 21 of 23 reservoirs was below 5m. Our results suggest that advanced wastewater treatment and crop land control in watershed of reservoirs with TP concentration ${\geq}0.1mg/L$ would be a effective tool to improve water quality. Dredging would to be effective measure in reservoirs with mean depth < 5 m and relatively old age. In reservoirs with chl.a concentration ${\geq}50{\mu}g/L$, application of technique such dissolved air flotation (DAF) and P inactivation be effective to improve water quality by removing particulate matters in water column. The management measure to control inflow such as sedimentation basin, Pre-dam and diversion would to be application in reservoirs with shallow depth, while large watershed and surface area.

Applicability of Load Duration Curve to Nakdong River Wateished Management (낙동강 유역관리를 위한 부하량 유황곡선의 적용 가능성)

  • Han, Suhee;Shin, Hyun Suk;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.620-627
    • /
    • 2007
  • In this study a general analysis method for watersheds with the entire runoff conditions and corresponding water quality is proposed and its applicability based on the currently available information is investigated. Using the 8-day-interval data set of runoff and water quality observed by Nakdong River Environment Research Center, the flow duration curve and discharge-load relation curve for each unit watershed are established, then the load duration curve is finally constructed. This paper discusses how the load duration curve can be used in the assessment of TMDL. The entire Nakdong river watershed is also divided into prior managing areas of point sources or non-point sources in a way of general management. It is thought that LDC can be a great tool for visualizing overall probabilities of current water quality and thus for the TMDL management.

Development of Flood Map Using Geographic Information System (GIS기반 홍수예측지도의 개발)

  • Kim Sang-Ho;Kim Han-Joong;Lee Nam-Ho;Kim Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.36-40
    • /
    • 2006
  • The objective of the study is to develop a GIS-based flood map. Hydraulic model (HEC-RAS) is linked with hydrologic model (HEC-HMS) for flood map. Geospatial data processors, HEC-GeoHMS and HEC-GeoRAS, are used for operating HEC-HMS and HEC-RAS. HEC-HMS was calibrated and validated at the Hwa-Ong watershed. HEC-HMS was used for calculating runoff from the Hwa-Ong watershed which consisted of Nam-Yang, Ja-An, U-Eun river sub-watersheds, and HEC-RAS was applied and validated for river flow routing at the Hwa-Ong watershed. The simulated results from HEC-HMS and HEC-RAS were reasonably good compared with the observed data. HEC-RAS and HEC-HMS were applied to simulate flooding from probability rainfall at the Hwa-Ong watershed, and the simulated result was used to develop a flood map. Flood map developed in this study will be used for mitigating and predicting the flood damages.

  • PDF