• Title/Summary/Keyword: Han river estuaries

Search Result 20, Processing Time 0.026 seconds

How many estuaries are there in Korea? (우리나라의 하구는 몇 개인가?)

  • Cho, Hong-Yeon;Cho, Beom-Jun;Kim, Han-Na
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.274-294
    • /
    • 2007
  • The most reasonable method of counting the number of the estuaries in Korea may be counting the number of streams flowing into the sea. The number counting of the streams should be carried out based on the river classes (National River, Regional 1st Class River and Regional 2nd Class River) given by the River Act. The National River scale estuaries are totaled to thirteen, i.e. Han River(including Imjin River), Anseongcheon, Sapgyocheon, Geum River, Mankyeong River, Dongjin River, Yeoungsan River, Tamjin River, Seomjin River, Gawhacheon, Nakdong River(including West Nakdong River), Taewha River, and Hyeongsan River estuaries. The Regional 1st Class River scale estuaries are counted as four, i.e. Yeoungdeok Osipcheon, Samcheok Osipcheon, Gangneung Namdaecheon, and Yangyang Namdaecheon. While, the Regional 2nd Class River estuaries are arranged as the Province and counted as total 444; Jeonnam, Gyeongnam, Chungnam, Jeju Province have the 108, 94, 52, and 35 estuaries, respectively. The counted estuary numbers, however, can be slightly increased/decreased on what references are applied, e.g. whether or not including the streams lost estuary functions by the sea-dike construction or integrated nearby streams, and so on.

Numerical Prediction of Tidal Current by Effects of Wind and Density Current in Estuaries of Yeong-il Bay (하구밀도류와 바람장이 영일만 해수유동에 미치는 영향)

  • Yoon, Han-Sam;Lee, In-Cheol;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.277-283
    • /
    • 2003
  • This paper constructed the 3D real-time numerical model for which predicts the water quality and movement characteristics of the inner bay, which consider the characteristics of the wind-driven current and density current in estuaries which generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The constructed numerical model reappeared successfully the seawater circulation current of Yeong-il Bay, which used the input conditions of the real-time tidal current, river discharge and weather conditions at March of 2001 year. Also to observe the wind-driven current and density current in estuaries effected to the seawater circulation pattern of the inner bay, we investigated the analyzation for the each impact factors and the relationship with the water quality of Yeong-il bay

  • PDF

Numerical Prediction of Tidal Current due to the Density and Wind-driven Current in Yeong-il Bay (하구밀도류와 취송류가 영일만 해수유동에 미치는 영향)

  • YOON HAN-SAM;LEE IN-CHEOL;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2004
  • This study constructed a 3D real-time numerical model that predicts the water quality and movement characteristics of the inner bay, considering the characteristics of the wind-driven current and density current in estuaries, generated by the river discharge from the Hyeong-san river and oceanic water of the Eastern sea. The numerical model successfully calculated the seawater circulation current of Yeong-il Bay, using the input conditions oj the real-time tidal current, river discharge, and weather conditions during March 2001. This study also observed the wind-driven current and density current in estuaries that are effected by the seawater circulation pattern of the inner bay. We investigated and analyzed each impact factor, and its relationship to the water quality of Yeong-il bay.

Spatio-temporal Distribution of Macrozoobenthos in the Three Estuaries of South Korea (우리나라 3개 하구역 대형저서동물 군집 시공간 분포)

  • LIM, HYUN-SIG;LEE, JIN-YOUNG;LEE, JUNG-HO;SHIN, HYUN-CHUL;RYU, JONGSEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.106-127
    • /
    • 2019
  • This study aims to understand spatio-temporal variations of macrozoobenthos community in Han River (HRE), Geum River (GRE), and Nakdong River estuaries (NRE) of Korea, sampled by National Survey of Marine Ecosystem. The survey was seasonally performed at a total of 20 stations for three years (2015-2017). Sediment samples were taken three times with van Veen grab of $0.1m^2$) areal size and sieved through a 1 mm pore size mesh on site. A total of 1,008 species were identified with 602 species in HRE, 612 in GRE, and 619 in NRE, showing similar number of species between estuaries. Mean density was $1,357ind./m^2$, showing the high in NRE ($1,357ind./m^2$), mid in GRE ($1,357ind./m^2$), and low in HRE ($1,127ind./m^2$). Mean biomass was $116.8g/m^2$, showing similar variations to density ($174.2g/m^2$ in NRE, $129.0g/m^2$ in GRE, $49.0g/m^2$ in HRE). Polychaeta dominated in number of species and density in three estuaries. Biomass-dominated taxon was Mollusca in HRE and GRE, and Echinodermata in NRE. Polychaetous species dominated all three estuaries over 4% of density, such as Dispio oculata, Heteromastus filiformis and Aonides oxycephala in HRE, Heteromastus filiformis and Scoletoma longifolia in GRE, and Pseudopolydora sp. and Aphelochaeta sp. in NRE, showing various density between estuaries. Community structure was determined by various environmental variables among estuaries such as mean grain size and sorting (HRE), salinity and mean grain size (GRE), and salinity, dissolved oxygen, loss on ignition and mud content (NRE). Our study demonstrates the application of different measures to manage ecosystems in three estuaries. HRE needs to alleviate sedimentary stressors such as sand mining, land-filling, dike construction. Management of GRE should be focused on fresh water control and sedimentary stressors. In NRE, monitoring of dominant benthos and process study on hypoxia occurrence in inner Masan Bay are necessary.

Propagation of tidal wave and resulted tidal asymmetry upward tidal rivers (감조하천에서 조석 전파 및 조석비대칭)

  • Kang, Ju Whan;Cho, Hong-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.433-442
    • /
    • 2021
  • In order to examine the characteristics of tidal wave from the estuary to upsteam of tidal river, tidal asymmetry was identified based on analysis of the harmonic constants of M2 and M4 tidal constituents in the domestic western coastal regions. As shallow water tide is greatly developed in the estuary, flood dominance in Han River and Keum River, and ebb dominance in Youngsan River are developed. These tidal asymmetries can be reconfirmed by analyzing the tidal current data. Unlike having reciprocating tidal current patterns in Keum and Youngsan estuaries, rotaing tidal current pattern is shown in the Han River estuary due to the complex topography and waterways around Ganghwa Island area. However, when residual current is removed, flood dominance is shown in consistency with the tide data. The tidal asymmetry in the estuary tends to intensify with the growth in shallow water tide as the tidal wave propagates to upstream of tidal river. Energy dissipation, in shallow Han River and Keum River classified as SD estuaries, is very large regarding bottom friction characteristics. On the other hand, the deep Youngsan River, classified as a WD estuary, shows less energy dissipation.

Development of Hydrodynamic Model on the Downstream of Han River by Using Geographical Information System (GIS와 연계한 한강 하류부에서의 동수역학적 수치모형의 개발)

  • Han, Geon-Yeon;Lee, Eul-Rae;Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.2
    • /
    • pp.107-118
    • /
    • 2001
  • This study was to develop a tow-dimensional model system for the hydrodynamic analysis and to apply the system on the downstream of Han River. it is performed to design a GIS-based hydrodynamic system for the scientific shallow water profile analysis, and to compare hydrodraulic modeling is the Petrov-Galerkin's finite element method for flow prediction model. This study was to construct a GIS-based river flow system, and it is useful for supporting user's decision making for the on-line status through various analysis. We expect that the results from this study can be used as one of the guidelines for river analysis and management system in order rivers, reservoirs, and estuaries.

  • PDF

Spatial Distribution and Temporal Variation of Estuarine Wetlands by Estuary Type (하구유형에 따른 권역별 하구습지의 분포특성과 시계열 변동추이 분석)

  • Rho, Paikho;Lee, Chang-Hee
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.321-338
    • /
    • 2014
  • This study aims to identify spatial distribution of estuarine wetlands in Korea, and to assess temporal variation of the wetlands in the last few decades. Widely known in environmental and coastal management, watershed-based regions which composed with Han-river(western and eastern parts), Keum-river, Yeoungsan-river, Seomjin-river, Nakdong-river, and Jeju, are analyzed to evaluate temporal change of estuarine wetlands in the 1980s, 1990s, and 2000s, through the land-cover map. Results show that estuarine wetlands dramatically decreased in Han-river(western part), Keum-river, Yeoungsan-river that estuarine circulation have been interrupted with man-made structures such as dyke and drainage. But, estuarine wetlands surrounded by forests and grasslands has been relatively less damaged. Habitat diversity providing healthy estuary ecosystem is lower in interrupted estuaries than circulated estuaries, which are composed of tidal-flat, open water, salt marsh, rocky coasts and sandy shoreline. This study indicates that spatial distribution and temporal variation of estuarine wetlands are different with estuary type and region, so estuary type with seven regions can be applied to provides a framework for estuary management strategies and to establish estuary restoration plans.

  • PDF

Depositional Sedimentary environments in the Han River Estuary and Around the Kyunggi Bay Posterior to the Han river's developments (한강종합개발 이후 한강하구 및 경기만의 퇴적환경)

  • 장현도;오재경
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.13-23
    • /
    • 1991
  • For the purpose of examining the depositional sedimentary environments in the Han River estuary and around the Kyunggi Bay posterior to the Han river's developments, a hydrological and sedimen-tological survey was carried out. According to the hydrological and sedimentological conditions, the studied area can be divided into 3 depositional sedimentary environments: Fluvial, Estuarine and coastal-Bay. Posterior to the Han river's developments, however, the alterations of hydrodynamic condition in the Han river have caused a substantial change of the sedimentary environments in the lower Han river and its estuary. That is, the contents of total suspended sediment anterior to the Developments decreased from 37mg/l (in the lower Han River) and 500-1750 mg/l (at the Kanghwa Bridge) to 18 mg/l and 208-1142 mg/l posterior to the developments. these changes seem to have caused the siltation near the sin-gok Underwater Dam. Thus the characters of the boundary condition between the fluvial and the estuarine environments have rapidly changed. It is considered that these changes result mainly from the construction of the two underwater dams for the maintenance of the water level of the Han river. As the estuary is a transition zone between land and sea, these changes in the Han River estuary might affect the sedimentary environments around the Kyunggi Bay. In order to verify the effects of these changes, it is necessary that a detailed survey be carried out around the Han River estuary including the Imjin and Yesong River estuaries.

  • PDF

Studies on probability extinction of Peregrine falcon species wintering around Jang Hang wetlands in the Han river (겨울철 한강 장항습지에 서식하는 매 멸종확률 예측에 대한 연구)

  • LEE, Sangdon
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.282-285
    • /
    • 2016
  • Peregrine falcon (Falco peregrinus) are listed as endangered species and Natural monument #323 in Korea, and this study examined the possibility of extinct of peregrine falcon in Jang Hang wetland near Han river using with the application of Population Viability Analysis (PVA) technique. In Jang Hang wetland areas population was monitored during 1999-2005 averaging 10.8 individuals and PVA analysis was done for the 5 years (2015-2020) using the average population size. Using the initial population was estimated 20% of extinct rate during the time. This estimation was quite low considering water pollution and loss of habitat. Also PVA only used population size lacking in other life history information. Nonetheless falcon population can be in risk of extinction if the current construction of crossovers in the river, cement bank are maintained. Long term information regarding life history needs essential.

The Spatial Distribution of the Ancient Liaoze in the Lower Reach of Liao River and Shoreline Change Since the Middle Holocene in China (중국 요하 하류부 고대 요택의 공간 분포와 Holocene 중기 이후 해안선 변화)

  • Yoon, Soon-Ock;Kim, Hyoseon;Jia, Jienqing;Bok, Gi-dae;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • Liao River with the largest basin area in the northeastern part of China has constructed huge floodplain along the lower reach. Especially a vast marsh was developed around estuaries and coastline near Liaodong Bay. The marsh was called as Yotaek(or Liaoze) before the modern time, which is meaningful for understanding human life since prehistorian times. By the analysis of historical documents and geomorphic data, it can be assumed that the height of Yotaek of landward boundary reached 20~30m from Heishan to Liaoyang during Han dynasty. The shoreline of 7,000 yr BP is estimated to coincide with the contour line between 20m and 30m at present. And the ancient shoreline during Christ era indicates 10m.a.s.l., which is corresponding to the seaside boundary of the Yotaek. The shoreline of Liaodong Bay was progressed seaward 30km/ka during 1000~1100 AD, while 10~40km/ka during late 19 century ~ early 20 century.