• 제목/요약/키워드: Hammett correlation

검색결과 62건 처리시간 0.022초

Kinetics and Reaction Mechanism for Alkaline Hydrolysis of Y-Substituted-Phenyl Diphenylphosphinates

  • Hong, Hyo-Jeong;Lee, Jieun;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2001-2005
    • /
    • 2013
  • The second-order rate constants ($k_{OH^-}$) for the reactions of Y-substituted-phenyl diphenylphosphinates (4a-4i) with $OH^-$ in $H_2O$ at $25.0{\pm}0.1^{\circ}C$ have been measured spectrophotometrically. Comparison of $k_{OH^-}$ with $k_{EtO^-}$ (the second-order rate constants for the corresponding reactions with $EtO^-$ in ethanol) has revealed that $EtO^-$ is less reactive than $OH^-$ although the former is ca. 3.4 $pK_a$ units more basic than the latter, indicating that the reactivity of these nucleophiles is not governed by their basicity alone. The Br${\o}$nsted-type plot for the reactions of 4a-4i with $OH^-$ is linear with ${\beta}_{lg}$ = -0.36. The Hammett plot correlated with ${\sigma}^-$ constants results in a slightly better correlation than that correlated with ${\sigma}^{\circ}$ constants but exhibits many scattered points. In contrast, the Yukawa-Tsuno plot for the same reactions exhibits an excellent linear correlation with ${\rho}$ = 0.95 and r = 0.55. The r value of 0.55 implies that a negative charge develops partially on the O atom of the leaving group. Thus, the reactions of 4a-4i with $OH^-$ have been concluded to proceed through a concerted mechanism.

Synthesis and Aminolysis of N,N-Diethyl Carbamic Ester of HOBt Derivatives

  • Khattab, Sherine Nabil;Hassan, Seham Yassin;Hamed, Ezzat Awad;Albericio, Fernando;El-Faham, Ayman
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.75-81
    • /
    • 2010
  • The reaction of N,N-diethyl carbamates of 1H-[1,2,3]triazolo[4,5-b]pyridin-1-ol (4-HOAt) 7, 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol (7-HOAt) 8, 1H-benzo[d][1,2,3]triazol-1-ol (HOBt) 9, 6-chloro-1H-benzo[d][1,2,3]triazol-1-ol (Cl-HOBt) 10, 6-(trifluoromethyl)-1H-benzo[d][1,2,3]triazol-1-ol ($CF_3$-HOBt) 11, and 6-nitro-1H-benzo[d][1,2,3]triazol-1-ol ($NO_2$-HOBt) 12 with morpholine and piperidine in $CH_3CN$ underwent acyl nucleophilic substitution to give the corresponding carboxamide derivatives. The reactants and products were identified by elemental analysis, IR and NMR. We measured the kinetics of these reactions spectrophotometrically in $CH_3CN$ at a range of temperatures. The rates of morpholinolysis and piperidinolysis were found to fit the Hammett equation and correlated with $\sigma$-Hammett values. The values were 1.44 - 1.21 for morpholinolysis and 1.95 - 1.72 for piperidinolysis depending on the temperature. The $Br{\phi}$nsted-type plot was linear with a $\beta_lg = -0.49 \pm 0.02$ and $-0.67 \pm 0.03$. The kinetic data and structure-reactivity relationships indicate that the reaction of 9-12 with amines proceeds by a concerted mechanism. The deviation from linearity of the correlation ${\Delta}H^#$ vs. ${\Delta}S^#$ and plot of $logk_{pip}$ vs. $logk_{morph}$ and $Br{\phi}$nsted-type correlation indicate that the reactions of amines with carbamates 7 and 8 is attributed to the electronic nature of their leaving groups.

A Kinetic Study on Aminolysis of 2-Pyridyl X-Substituted Benzoates: Effect of Changing Leaving Group from 4-Nitrophenolate to 2-Pyridinolate on Reactivity and Mechanism

  • Lee, Jong-Pal;Bae, Ae-Ri;Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3588-3592
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for nucleophilic substitution reactions of 2-pyridyl X-substituted benzoates 8a-e with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 8a-e are slightly smaller than the corresponding reactions of 4-nitrophenyl X-substituted benzoates 1a-e (e.g., $kN^{1a-e}/k_N^{8a-e}$ = 1.1 ~ 3.1), although 2-pyridinolate in 8a-e is ca. 4.5 $pK_a$ units more basic than 4-nitrophenolate in 1a-e. The Br$\o$nsted-type plot for the aminolysis of 8c (X = H) is linear with $\beta_{nuc}$ = 0.77 and $R^2$ = 0.991 (Figure 1), which is typical for reactions reported previously to proceed through a stepwise mechanism with breakdown of a zwitterionic tetrahedral intermediate $T^{\pm}$ being the rate-determining step (RDS), e.g., aminolysis of 4-nitrophenyl benzoate 1c. The Hammett plot for the reactions of 8a-e with piperidine consists of two intersecting straight lines (Figure 2), i.e., $\rho$ = 1.71 for substrates possessing an electron-donating group (EDG) while $\rho$ = 0.86 for those bearing an electron-withdrawing group (EWG). Traditionally, such a nonlinear Hammett plot has been interpreted as a change in RDS upon changing substituent X in the benzoyl moiety. However, it has been proposed that the nonlinear Hammett is not due to a change in RDS since the corresponding Yukawa-Tsuno plot exhibits excellent linear correlation with $\rho$ = 0.85 and r = 0.62 ($R^2$ = 0.995, Figure 3). Stabilization of substrates 8a-e in the ground state has been concluded to be responsible for the nonlinear Hammett plot.

The New Substituent Constants in the Excited States

  • Shim Sang Chul;Park Joon Won;Ham Hie Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제3권1호
    • /
    • pp.13-18
    • /
    • 1982
  • The new substituent constants $({\sigma}^{\ast})$ are calculated from the acidity constants $(pK^{\ast})$ of phenol derivatives in the excited state ($^1L_b$). These substituent constant are applied to the Hammett equations and found good correlation with $pK^{\ast}$ of 2,6-di-tert-butyl phenol, benzamide, nitroaniline, thiophenol, azobenzene, and benzoic acid derivatives. The correlation was much better than that of ground state substituent constants such as ${\sigma},\;{\sigma}^+$, and ${\sigma}^-$. From these results, the new substituent constants $({\sigma}^{\ast})$are proposed to be used for the linear free energy relationship in the $^1({\pi},{\pi}^{\ast})$ excited states of phenyl compounds.

Styryl-6-Methoxy-2-Naphthyl Ketone 유도체의 합성 및 특성 분석 (Synthesis, Characterization and Correlation Analysis in Styryl 6-Methoxy-2-Naphthyl Ketones)

  • Thirunarayanan, G.
    • 대한화학회지
    • /
    • 제51권2호
    • /
    • pp.115-124
    • /
    • 2007
  • α, β-불포화 케톤 유도체를 실리카-황산 촉매 하에서 비용매 교차 알돌 응축 반응법을 이용하여 합성하였다. 합성 수율은 90% 이상이었으며, 사용된 촉매는 회수 가능하였다. 합성돤 화합물들의 물리화학적인 특성은 IR, NMR, Mass 등의 분광학적 분석 방법을 이용하여 결정하였다. 케톤 생성물에 미치는 치환기 효과는 측정된 분광 데이터와 Hammet 치환기 상수간의 상관관계로 표현되는 다중 상관계수 방정식에 의하여 잘 설명될 수 있었다.

Kinetic Study on Aminolysis of 4-Pyridyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Reaction Mechanism

  • Lee, Jong-Pal;Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1907-1911
    • /
    • 2011
  • A kinetic study is reported for nucleophilic substitution reactions of 4-pyridyl X-substituted benzoates 7a-e with a series of alicyclic secondary amines in H2O. The Br${\o}$nsted-type plot for the reactions of 4-pyridyl benzoate 7c is linear with ${\beta}_{nuc}$ = 0.71. The corresponding reactions of 2-pyridyl benzoate 6, which is less reactive than 7c, resulted in also a linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.77. The fact that the more reactive 7c results in a smaller ${\beta}_{nuc}$ value appears to be in accord with the reactivity-selectivity principle. The aminolysis of 7c has been suggested to proceed through a stepwise mechanism in which breakdown of the intermediate is the rate-determining step (RDS). The Hammett plot for the reactions of 7a-e with piperidine consists of two intersecting straight lines, i.e., ${\rho}_X$ = 1.47 for substrates possessing an electron-donating group (EDG) and ${\rho}_X$ = 0.91 for those possessing an electron-withdrawing group (EWG). In contrast, the corresponding Yukawa-Tsuno plot exhibits excellent linear correlation with ${\rho}_X$ = 0.79 and r = 0.56. Thus, it has been concluded that the nonlinear Hammett plot is not due to a change in the RDS but is caused by stabilization of the ground state of the substrates possessing an EDG through resonance interaction between the EDG and the C=O bond of the substrates.

K+ Ion Catalysis in Nucleophilic Displacement Reaction of Y-Substituted-Phenyl Picolinates with Potassium Ethoxide: Effect of Substituent Y on Reactivity and Transition State Structure

  • Im, Hyun-Ju;Lee, Jieun;Kim, Mi-Yeon;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1749-1753
    • /
    • 2014
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the nucleophilic substitution reaction of Y-substituted-phenyl picolinates (7a-f) with potassium ethoxide (EtOK) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plot of $k_{obsd}$ vs. [EtOK] curves upward while the plot of $k_{obsd}/[EtO^-]_{eq}$ vs. $[EtO^-]_{eq}$ is linear with a positive intercept in all cases. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOK}$ (i.e., the second-order rate constants for the reactions with the dissociated $EtO^-$ ion and ion-paired EtOK, respectively) has revealed that the ion-paired EtOK is more reactive than the dissociated $EtO^-$. The ${\sigma}^{\circ}$ constants result in a much better Hammett correlation than ${\sigma}^-$ constants, indicating that the reaction proceeds through a stepwise mechanism in which departure of the leaving group occurs after the rate-determining step (RDS). $K^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through formation of a cyclic transition state (TS). The catalytic effect decreases as the substituent Y becomes a stronger electron-withdrawing group (EWG). Development of a positive charge on the N atom of the picolinyl moiety through resonance interactions is responsible for the decreasing $K^+$ ion catalysis.

Kinetic Study on SNAr Reaction of 1-Y-Substituted-phenoxy-2,4-dinitrobenzenes with Hydroxide Ion: Effect of Substituent Y on Reactivity and Reaction Mechanism

  • Kang, Tae-Ah;Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2135-2138
    • /
    • 2014
  • A kinetic study is reported for the SNAr reaction of 1-Y-substituted-phenoxy-2,4-dinitrobenzenes (1a-1h) with OH- in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The second-order rate constant ($k_{OH^-}$) increases as the substituent Y in the leaving group changes from an electron-donating group (EDG) to an electronwithdrawing group (EWG). The Br${\o}$nsted-type plot for the reactions of 1a-1h is linear with ${\beta}_{lg}$ = -0.16, indicating that the reactivity of substrates 1a-1h is little affected by the leaving-group basicity. A linear Br${\o}$nsted-type plot with ${\beta}_{lg}=-0.3{\pm}0.1$ is typical for reactions reported previously to proceed through a stepwise mechanism in which formation of a Meisenheimer complex is the rate-determining step (RDS). The Hammett plot correlated with ${\sigma}_Y{^{\circ}}$ constants results in a much better correlation than that correlated with ${\sigma}_Y{^-}$constants, implyng that no negative charge is developing on the O atom of the leaving group (or expulsion of the leaving group is not advanced at all in the TS). This excludes a possibility that the $S_NAr$ reaction of 1a-1h with $OH^-$ proceeds through a concerted mechanism or via a stepwise pathway with expulsion of the leaving group being the RDS. Thus, the current reactions have been concluded to proceed through a stepwise mechanism in which expulsion of the leaving group occurs rapidly after the RDS.

The α-Effect in Hydrazinolysis of 4-Chloro-2-Nitrophenyl X-Substituted-Benzoates: Effect of Substituent X on Reaction Mechanism and the α-Effect

  • Kim, Min-Young;Kim, Tae-Eun;Lee, Jieun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2271-2276
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reaction of 4-chloro-2-nitrophenyl X-substituted-benzoates (6a-6h) with a series of primary amines including hydrazine in 80 mol % $H_2O$/20 mol % DMSO at $25.0^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 4-chloro-2-nitrophenyl benzoate (6d) is linear with ${\beta}_{nuc}$ = 0.74 when hydrazine is excluded from the correlation. Such a linear Br${\o}$nsted-type plot is typical for reactions reported previously to proceed through a stepwise mechanism in which expulsion of the leaving group occurs in the rate-determining step (RDS). The Hammett plots for the reactions of 6a-6h with hydrazine and glycylglycine are nonlinear. In contrast, the Yukawa-Tsuno plots exhibit excellent linear correlations with ${\rho}_X$ = 1.29-1.45 and r = 0.53-0.56, indicating that the nonlinear Hammett plots are not due to a change in RDS but are caused by resonance stabilization of the substrates possessing an electron-donating group (EDG). Hydrazine is ca. 47-93 times more reactive than similarly basic glycylglycine toward 6a-6h (e.g., the ${\alpha}$-effect). The ${\alpha}$-effect increases as the substituent X in the benzoyl moiety becomes a stronger electron-withdrawing group (EWG), indicating that destabilization of the ground state (GS) of hydrazine through the repulsion between the nonbonding electron pairs on the two N atoms is not solely responsible for the substituent-dependent ${\alpha}$-effect. Stabilization of transition state (TS) through five-membered cyclic TSs, which would increase the electrophilicity of the reaction center or the nucleofugality of the leaving group, contributes to the ${\alpha}$-effect observed in this study.

Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-Benzoates with Potassium Ethoxide: Reaction Mechanism and Role of K+ Ion

  • Kim, Song-I;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.225-230
    • /
    • 2014
  • A kinetic study on nucleophilic substitution reactions of 4-nitrophenyl X-substituted-benzoates (7a-i) with EtOK in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$ is reported. The plots of pseudo-first-order rate constants ($k_{obsd}$) vs. [EtOK] curve upward. Dissection of $k_{obsd}$ into the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOK (i.e., $k_{EtO^-}$ and $k_{EtOK}$, respectively) has revealed that the ion-paired EtOK is more reactive than the dissociated $EtO^-$. Hammett plots for the reactions of 7a-i with the dissociated $EtO^-$ and ion-paired EtOK exhibit excellent linear correlations with ${\rho}_X$ = 3.00 and 2.47, respectively. The reactions have been suggested to proceed through a stepwise mechanism in which departure of the leaving-group occurs after the RDS. The correlation of the $k_{EtOK}/k_{EtO^-}$ ratio with the ${\sigma}_X$ constants exhibits excellent linearity with a slope of -0.53. It is concluded that the ion-paired EtOK catalyzes the reaction by increasing the electrophilicity of the reaction center rather than by enhancing the nucleofugality of the leaving group.