• 제목/요약/키워드: Hammer scale

검색결과 42건 처리시간 0.028초

다단계 긴장 PSC 거더 철도교량의 고유진동수 및 감쇠비 평가를 위한 동적실험 (Dynamic Experiments of the Incrementally Prestressed Concrete Girder Railway Bridge for Evaluation of Natural Frequencies and Damping Ratios)

  • 김성일;조재열;여인호;이희업;방춘석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.98-101
    • /
    • 2006
  • As an alternative of conventional prestressed concrete (PSC) girders, various types of PSC girders are being developed and applied in bridge structures. Incrementally prestressed concrete girder is one of these newly developed girders. According to design concept, these new types of PSC girders have considerable advantages to reduce their self-weight and make spans longer. However, dynamic interaction between bridge superstructures and passing trains would be sometimes one of critical issues in these more flexible railway bridges. Therefore, it is very important to evaluate modal parameters of newly designed bridges before conducting dynamic analyses. In the present paper, a 25 meters long full scale PSC girder was fabricated as a test specimen and modal testing was carried out to evaluate modal parameters including natural frequencies and modal damping ratios at every prestressing stage. In the modal testing, a digitally controlled vibration exciter as well as an impact hammer is applied to obtain frequency response functions more exactly and the modal parameters are evaluated varying with construction stages. Prestressed force effects on changes of modal parameters are analyzed at every incremental prestressing stage.

  • PDF

유한요소해석법을 이용한 평형형 진동이송기의 고유진동수 특성분석에 관한 연구 (A Study on the Vibrational Characteristics of Natural Frequency with Balancing type Vibratory Conveyor Using Finite Element Methods)

  • 이승용;이성일;김철호;최영재;최우천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.568-572
    • /
    • 2001
  • An industrial vibratory conveyor system is devised for large-scale feeding by the low-power, using natural frequency of the system. The important thing in this system is to determine the natural frequency and to drive by it. The purpose of this study is to build up reliance on the system with changing of element parameters for vibration characteristics of balancing type vibratory conveyor by using F.E.M. modeling. For investigating the natural frequency, modal testing is performed by using impact hammer, accelerometer and LMS/Vibration Analysis System. Experimental results are compared with F.E.M results. The results of the comparisons within the errors of less than 2 percent can verify the reliability of the F.E.M. analysis of the system. Also we can verify that the characteristics of natural frequency have linearly decreased(-6%) as adding the mass($50{\sim}600kg$). We can find that controlling driving frequency is necessary for triggering the natural frequency, but natural frequency is less affected by adding the mass on the balancing weight.

  • PDF

쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구 (Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone)

  • 김민송;김재남;변영섭;김정;강범수
    • 한국정밀공학회지
    • /
    • 제33권9호
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.

진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석 (Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material)

  • 김진호;이나현;허진호;김희규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권4호
    • /
    • pp.94-103
    • /
    • 2016
  • 궤도가 역사의 상부에 위치하여 열차운행으로 인하여 발생한 진동이 직접 전달되는 선하역사에서 구조물 진동과 이로 인한 구조물기인 소음이 기준치보다 높은 것으로 나타남에 따라, 기존 선하역사에 대하여 열차 운행의 중단 없이 진동저감이 가능한 경제적, 효율적 방안이 요구된다. 이에 본 연구에서는 진동전달 경로상의 기둥에 워터젯 공법으로 기둥단면에서 피복재 부분을 파쇄한 후 진동전달 절연기능을 가지는 에폭시 소재의 방진재를 보강하여 진동을 저감시키기 위한 구조진동절연시스템을 개발하였다. 방진재의 보강체적을 변수로 한 진동절연 시스템을 실제역사 기둥의 1/4축소모형에 적용하고, 충격가진 시험을 통한 진동저감 성능과 횡하중 반복가력시험을 통한 구조적 성능을 검증하고자 하였다. 충격가진 실험결과로부터 구조진동절연시스템을 적용할 경우 고유 진동주기가 하향되어 진동응답 특성이 변화되고 감쇠비는 약 15~30%까지 증가를 나타내어 진동저감 성능이 있음을 알 수 있었다. 또한 반복하중 가력에 의한 구조성능 실험에서 하중-변위 및 강성변화에 대한 고찰과 연성도 및 에너지 소산의 증가를 보인 결과로 부터 구조부재로의 기능을 유지함을 확인 할 수 있었다.

산불로 인한 임도 배수시설의 콘크리트 강도 변화 (Change in the Concrete Strength of Forest Road Drainage Systems Caused by Forest Fires)

  • 최예준;황진성;황영인;전현준;권형근;이준우
    • 한국산림과학회지
    • /
    • 제112권4호
    • /
    • pp.451-458
    • /
    • 2023
  • 산불이 대형화됨에 따라 산불 예방 및 진화를 위해 임도시설의 중요성이 증가하고 있다. 산불 발생 시 임도가 제 역할을 수행하기 위해서는 적정한 노선 선정과 함께 구조적인 안정성을 확보해야 한다. 그동안의 연구는 산불 발생에 따른 임도의 효과와 노선 배치에 치중되어 있으며, 임도의 안전성 확보를 위한 연구는 수행되지 않은 실정이다. 따라서, 본 연구는 최근 3년간 초대형 산불 발생지 내의 임도 콘크리트 시설물을 대상으로 콘크리트 비파괴검사기법 중 하나인 반발경도법을 이용하여 산불 여부에 따라 그 강도를 비교하였다. 연구 결과, 산불 피해 콘크리트 시설물(15.4 MPa)은 미피해 콘크리트 시설물(18.0 MPa)에 비해 낮은 강도를 나타냈으며(p<0.001), 그 경향은 모든 대상 시설물에서 동일하게 나타났다. 따라서, 임도 시설의 강도 저하로 인한 임도의 2차 피해를 방지하기 위해 임도 시설물의 안전진단 기준이 마련되어야 할 것이다. 또한, 본 연구 결과에 대한 지속적인 모니터링과 실내 실험을 동반한 후속 연구가 진행되어 임도의 안정성을 제고해야 하며, 이를 통해 산불 예방과 진화를 위한 더 나은 전략을 마련할 수 있을 것이라 기대한다.

초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가 (Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound)

  • 최하진;김률리;이종석;민지영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권4호
    • /
    • pp.56-64
    • /
    • 2021
  • 구조체 열화, 손상 등에 의해 발생하는 누수는 동결융해에 의한 체적 변화를 유발하는 주요 원인 중 하나이며, 콘크리트 내부의 미세균열, 표면 스케일링 등을 유발한다. 이러한 손상은 염화물 등 외기 유해물질 침투 및 확산을 가속화시킨다. 시설물 성능평가 세부지침(2020)에서 피복 콘크리트 품질과 동해환경 지표가 새롭게 제시되었으며, 피복 콘크리트 품질은 반발경도시험으로, 동해환경은 동결융해 싸이클 수로 평가한다. 본 논문에서는 빠른 동특성 기반 초음파 비선형성을 통해 동결융해에 의한 초기 미세손상을 평가하고자 하였다. 서로 다른 물-시멘트비(40%, 60%)와 공기량(1.5%, 3.0%)을 가지는 콘크리트 시험체를 제작하고, 동결융해 싸이클 수를 증가시키며 압축강도, 반발경도, 상대동 탄성계수, 초음파 비선형성을 측정하였으며, SEM을 활용하여 미세균열 발생 및 진전을 분석하였다. 그 결과, 상대동탄성계수 및 반발경도로는 확인이 어려웠던 초기 미세손상을 공진주파수 비선형성 측정을 통해 탐지할 수 있었으며, 콘크리트의 동결융해 저항성능을 예측할 수 있다는 가능성을 확인하였다.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

Research on damage and identification of mortise-tenon joints stiffness in ancient wooden buildings based on shaking table test

  • Xue, Jianyang;Bai, Fuyu;Qi, Liangjie;Sui, Yan;Zhou, Chaofeng
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.547-556
    • /
    • 2018
  • Based on the shaking table tests of a 1:3.52 scale one-bay and one-story ancient wooden structure, a simplified structural mechanics model was established, and the structural state equation and observation equation were deduced. Under the action of seismic waves, the damage rule of initial stiffness and yield stiffness of the joint was obtained. The force hammer percussion test and finite element calculations were carried out, and the structural response was obtained. Considering the 5% noise disturbance in the laboratory environment, the stiffness parameters of the mortise-tenon joint were identified by the partial least squares of singular value decomposition (PLS-SVD) and the Extended Kalman filter (EKF) method. The results show that dynamic and static cohesion method, PLS-SVD, and EKF method can be used to identify the damage degree of structures, and the stiffness of the mortise-tenon joints under strong earthquakes is reduced step by step. Using the proposed model, the identified error of the initial stiffness is about 0.58%-1.28%, and the error of the yield stiffness is about 0.44%-1.21%. This method has high accuracy and good applicability for identifying the initial stiffness and yield stiffness of the joints. The identification method and research results can provide a reference for monitoring and evaluating actual engineering structures.

Wavelet analysis based damage localization in steel frames with bolted connections

  • Pnevmatikos, Nikos G.;Blachowski, Bartlomiej;Hatzigeorgiou, George D.;Swiercz, Andrzej
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1189-1202
    • /
    • 2016
  • This paper describes an application of wavelet analysis for damage detection of a steel frame structure with bolted connections. The wavelet coefficients of the acceleration response for the healthy and loosened connection structure were calculated at each measurement point. The difference of the wavelet coefficients of the response of the healthy and loosened connection structure is selected as an indicator of the damage. At each node of structure the norm of the difference of the wavelet coefficients matrix is then calculated. The point for which the norm has the higher value is a candidate for location of the damage. The above procedure was experimentally verified on a laboratory-scale 2-meter-long steel frame. The structure consists of 11 steel beams forming a four-bay frame, which is subjected to impact loads using a modal hammer. The accelerations are measured at 20 different locations on the frame, including joints and beam elements. Two states of the structure are considered: healthy and damaged one. The damage is introduced by means of loosening two out of three bolts at one of the frame connections. Calculating the norm of the difference of the wavelet coefficients matrix at each node the higher value was found to be at the same location where the bolts were loosened. The presented experiment showed the effectiveness of the wavelet approach to damage detection of frame structures assembled using bolted connections.

열간 자유단조 공정 자동화를 위한 금형 어태치먼트에 관한 연구 (A Study on the mold attachment for process automation with hot open die forging)

  • 김철표;정효민;정한식;지명국
    • 동력기계공학회지
    • /
    • 제16권5호
    • /
    • pp.70-75
    • /
    • 2012
  • In mechanical industries, forging is one of the basic process. But comparing the other developed industries, forging industries can not reach at the level of that development. In forging industries, the quality of the products totally depends on the skills of workers and also the precision of the equipments. Particularly because the open die forging industry is unable to deviate from the past method of production and all works are manually progressed, the operator is always exposed to the danger. In the regard some additional device has been made especially. Thus, in this research, by using the forklift as the means for the manipulation of the development object system, it tries to be comprised the process automation. After than it is fitted with the forklift for safe and easy handling of jobs and products during open die forging process. First of all, development system mold has been assembled to the system, after than it is assembled with forklift. This development system has been applied for handling of large scale products more than 300kg, and the satisfactory result with uniform quality of the products have been achieved due to this mechanical setup.