• 제목/요약/키워드: Hamilton principle

검색결과 811건 처리시간 0.028초

An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.

다중 크랙이 있는 복합재료 보의 자유진동 특성 (Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks)

  • 하태완;송오섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.5-14
    • /
    • 1999
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

내부유동을 포함한 굴곡된 파이프의 외평면 진동해석 (Out-of-Plane Vibrations of Angled Pipes Conveying Fluid)

  • Pak, chol-Hui;Hong, Sung-Chul;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.306-315
    • /
    • 1991
  • 본 연구는 두개의 직선 pipe가 elbow로 연결된 piping system의 내부에 유체가 흐를때 발생하는 out-of-plane 운동을 다루었으며, Extended Hamilton's principle을 이용하여 운동방정식을 유도하였다. clamped-clamped, clamped-pinned; pinned-pinned인 경계조건을 갖는 piping system의 경우, dynamic instability는 일어나지 않음을 고찰하였으며, 각 경계조건에 대한 진동수 방정식으로부터 고유진동수의 수치해를 얻었다. 유체의 속도와 Coriolis힘이 진동수에 미치는 영향을 고찰하였고, 유체의 속도와 압력이 어느값을 넘어설때 buckling-type instability가 일어남을 알았다. 그리고 유체의 속도와 압력의 함수로 등가임계속도를 정의하고 여러가지 경계조건에 대해 buckling 이 일어나는 등가임계속도를 계산하였다.

  • PDF

Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials

  • Nejad, Mohammad Zamani;Hadi, Amin;Farajpour, Ali
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.161-169
    • /
    • 2017
  • In this paper, using consistent couple stress theory and Hamilton's principle, the free vibration analysis of Euler-Bernoulli nano-beams made of bi-directional functionally graded materials (BDFGMs) with small scale effects are investigated. To the best of the researchers' knowledge, in the literature, there is no study carried out into consistent couple-stress theory for free vibration analysis of BDFGM nanostructures with arbitrary functions. In addition, in order to obtain small scale effects, the consistent couple-stress theory is also applied. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-tensor is skew-symmetric by adopting the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in both axial and thickness directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of Hamilton principle. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of BDFG nano-beam. At the end, some numerical results are presented to study the effects of material length scale parameter, and inhomogeneity constant on natural frequency.

Aeroelastic Stability Analysis of Hingeless Rotor Blades with Composite Flexures

  • Kim, Seung-Jo;Kim, Ki-Tae;Jung, Sung-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.512-521
    • /
    • 2002
  • The flap-lag-torsion coupled aeroelastic behavior of a hingeless rotor blade with composite flexures in hovering flight has been investigated by using the finite element method. The quasisteady strip theory with dynamic inflow effects is used to obtain the aerodynamic loads acting on the blade. The governing differential equations of motion undergoing moderately large displacements and rotations are derived using the Hamilton's principle. The flexures used in the present model are composed of two composite plates which are rigidly attached together. The lead-lag flexure is located inboard of the flap flexure. A mixed warping model that combines the St. Versant torsion and the Vlasov torsion is developed to describe the twist behavior of the composite flexure. Numerical simulations are carried out to correlate the present results with experimental test data and also to identify the effects of structural couplings of the composite flexures on the aeroelastic stability of the blade. The prediction results agree well with other experimental data. The effects of elastic couplings such as pitch-flap, pitch-lag, and flap-lag couplings on the stability behavior of the composite blades are also investigated.

On the modeling of dynamic behavior of composite plates using a simple nth-HSDT

  • Djedid, I. Klouche;Draiche, Kada;Guenaneche, B.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.371-387
    • /
    • 2019
  • In the present paper, a simple refined nth-higher-order shear deformation theory is applied for the free vibration analysis of laminated composite plates. The proposed displacement field is based on a novel kinematic in which include the undetermined integral terms and contains only four unknowns, as against five or more in case of other higher-order theories. The present theory accounts for adequate distribution of the transverse shear strains through the plate thickness and satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the plate, therefore, it does not require problem dependent shear correction factor. The governing equations of motion are derived from Hamilton's principle and solved via Navier-type to obtain closed form solutions. The numerical results of non-dimensional natural frequencies obtained by using the present theory are presented and compared with those of other theories available in the literature to verify the validity of present solutions. It can be concluded that the present refined theory is accurate and efficient in predicting the natural frequencies of isotropic, orthotropic and laminated composite plates.

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

유체 유동을 갖는 직선관의 진동 해석을 위해 새로운 비선형 모델링 (New Non-linear Modelling for Vibration Analysis of Straight Pipe Conveying Fluid)

  • 이수일;정진태;임형빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.372-377
    • /
    • 2001
  • A new non-linear of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion for are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the $generalized-{\alpha}$ time integration method to the non-linear discretized equations. The validity of the new modeling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by $Pa{\ddot{i}}dousis$.

  • PDF

Free vibration analysis of tall buildings with outrigger-belt truss system

  • Malekinejad, Mohsen;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.89-107
    • /
    • 2011
  • In this paper a simple mathematical model is presented for estimating the natural frequencies and corresponding mode shapes of a tall building with outrigger-belt truss system. For this purposes an equivalent continuum system is analyzed in which a tall building structure is replaced by an idealized cantilever continuum beam representing the structural characteristics. The equivalent system is comprised of a cantilever shear beam in parallel to a cantilever flexural beam that is constrained by a rotational spring at outrigger-belt truss location. The mathematical modeling and the derivation of the equation of motion are given for the cantilevers with identically paralleled and rotational spring. The equation of motion and the associated boundary conditions are analytically obtained by using Hamilton's variational principle. After obtaining non-trivial solution of the eigensystem, the resulting is used to determine the natural frequencies and associated mode shapes of free vibration analysis. A numerical example for a 40 story tall building has been solved with proposed method and finite element method. The results of the proposed mathematical model have good adaptation with those obtained from finite element analysis. Proposed model is practically suitable for quick evaluations during the preliminary design stages.

Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory

  • Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Algarni, Ali;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제25권2호
    • /
    • pp.155-166
    • /
    • 2020
  • In this work, the buckling and vibrational behavior of the composite beam armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic foundation are investigated. The CNT-RC beam is modeled by a novel integral first order shear deformation theory. The current theory contains three variables and uses the shear correction factors. The equivalent properties of the CNT-RC beam are computed using the mixture rule. The equations of motion are derived and resolved by Applying the Hamilton's principle and Navier solution on the current model. The accuracy of the current model is verified by comparison studies with others models found in the literature. Also, several parametric studies and their discussions are presented.