• Title/Summary/Keyword: Hamilton'S Principle

Search Result 760, Processing Time 0.03 seconds

Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates

  • Younsi, Abderahman;Tounsi, Abdelouahed;Zaoui, Fatima Zohra;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.519-532
    • /
    • 2018
  • In this work, two dimensional (2D) and quasi three-dimensional (quasi-3D) HSDTs are proposed for bending and free vibration investigation of functionally graded (FG) plates using hyperbolic shape function. Unlike the existing HSDT, the proposed theories have a novel displacement field which include undetermined integral terms and contains fewer unknowns. The material properties of the plate is inhomogeneous and are considered to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori-Tanaka model, in terms of the volume fractions of the constituents. The governing equations which consider the effects of both transverse shear and thickness stretching are determined through the Hamilton's principle. The closed form solutions are deduced by employing Navier method and then fundamental frequencies are obtained by solving the results of eigenvalue problems. In-plane stress components have been determined by the constitutive equations of composite plates. The transverse stress components have been determined by integrating the 3D stress equilibrium equations in the thickness direction of the FG plate. The accuracy of the present formulation is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.

Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory

  • Mouffoki, Abderrahmane;Bedia, E.A. Adda;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.369-383
    • /
    • 2017
  • In this work, the effects of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is studied by proposing a novel simple trigonometric shear deformation theory. The main advantage of this theory is that, in addition to including the shear deformation influence, the displacement field is modeled with only 2 unknowns as the case of the classical beam theory (CBT) and which is even less than the Timoshenko beam theory (TBT). Three types of environmental condition namely uniform, linear, and sinusoidal hygrothermal loading are studied. Material properties of FG beams are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from Hamilton's principle. Numerical examples are presented to show the validity and accuracy of present shear deformation theories. The effects of hygro-thermal environments, power law index, nonlocality and elastic foundation on the free vibration responses of FG beams under hygro-thermal effect are investigated.

On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model

  • Belkorissat, Ismahene;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1063-1081
    • /
    • 2015
  • In this paper, a new nonlocal hyperbolic refined plate model is presented for free vibration properties of functionally graded (FG) plates. This nonlocal nano-plate model incorporates the length scale parameter which can capture the small scale effect. The displacement field of the present theory is chosen based on a hyperbolic variation in the in-plane displacements through the thickness of the nano-plate. By dividing the transverse displacement into the bending and shear parts, the number of unknowns and equations of motion of the present theory is reduced, significantly facilitating structural analysis. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG nano-plate are computed using Mori-Tanaka homogenization scheme. The governing equations of motion are derived based on the nonlocal differential constitutive relations of Eringen in conjunction with the refined four variable plate theory via Hamilton's principle. Analytical solution for the simply supported FG nano-plates is obtained to verify the theory by comparing its results with other available solutions in the open literature. The effects of nonlocal parameter, the plate thickness, the plate aspect ratio, and various material compositions on the dynamic response of the FG nano-plate are discussed.

A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells

  • Zine, Abdallah;Tounsi, Abdelouahed;Draiche, Kada;Sekkal, Mohamed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.125-137
    • /
    • 2018
  • In this work, the bending and free vibration analysis of multilayered plates and shells is presented by utilizing a new higher order shear deformation theory (HSDT). The proposed involves only four unknowns, which is even less than the first shear deformation theory (FSDT) and without requiring the shear correction coefficient. Unlike the conventional HSDTs, the present one presents a novel displacement field which incorporates undetermined integral variables. The equations of motion are derived by using the Hamilton's principle. These equations are then solved via Navier-type, closed form solutions. Bending and vibration results are found for cylindrical and spherical shells and plates for simply supported boundary conditions. Bending and vibration problems are treated as individual cases. Panels are subjected to sinusoidal, distributed and point loads. Results are presented for thick to thin as well as shallow and deep shells. The computed results are compared with the exact 3D elasticity theory and with several other conventional HSDTs. The proposed HSDT is found to be precise compared to other several existing ones for investigating the static and dynamic response of isotropic and multilayered composite shell and plate structures.

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.

Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation

  • Bendenia, Noureddine;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Bedia, E.A. Adda;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.213-226
    • /
    • 2020
  • The present study covenants with the static and free vibration behavior of nanocomposite sandwich plates reinforced by carbon nanotubes resting on Pasternak elastic foundation. Uniformly distributed (UD-CNT) and functionally graded (FG-CNT) distributions of aligned carbon nanotube are considered for two types of sandwich plates such as, the face sheet reinforced and homogeneous core and the homogeneous face sheet and reinforced core. Based on the first shear deformation theory (FSDT), the Hamilton's principle is employed to derive the mathematical models. The obtained solutions are numerically validated by comparison with some available cases in the literature. The elastic foundation model is assumed as one parameter Winkler - Pasternak foundation. A parametric study is conducted to study the effects of aspect ratios, foundation parameters, carbon nanotube volume fraction, types of reinforcement, core-to-face sheet thickness ratio and types of loads acting on the bending and free vibration analyses. It is explicitly shown that the (FG-CNT) face sheet reinforced sandwich plate has a high resistance against deflections compared to other types of reinforcement. It is also revealed that the reduction in the dimensionless natural frequency is most pronounced in core reinforced sandwich plate.

Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory

  • Matouk, Hakima;Bousahla, Abdelmoumen Anis;Heireche, Houari;Bourada, Fouad;Bedia, E.A. Adda;Tounsi, Abdelouahed;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Benrahou, K.H.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.293-305
    • /
    • 2020
  • In the current research, the free vibrational behavior of the FG nano-beams integrated in the hygro-thermal environment and reposed on the elastic foundation is investigated using a novel integral Timoshenko beam theory (ITBT). The current model has only three variables unknown and requires the introduction of the shear correction factor because her uniformed variation of the shear stress through the thickness. The effective properties of the nano-beam vary according to power-law and symmetric sigmoid distributions. Three models of the hygro-thermal loading are employed. The effect of the small scale effect is considered by using the nonlocal theory of Eringen. The equations of motion of the present model are determined and resolved via Hamilton principle and Navier method, respectively. Several numerical results are presented thereafter to illustrate the accuracy and efficiency of the actual integral Timoshenko beam theory. The effects of the various parameters influencing the vibrational responses of the P-FG and SS-FG nano-beam are also examined and discussed in detail.

Linear and Nonlinear Analysis of Initially Stressed Elastic Solid (초기응력이 있는 탄성체의 선형 및 비선형해석 -플레이트 스트립을 중심으로)

  • 권영두;최진민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.642-651
    • /
    • 1988
  • The present paper develops finite element procedures to calculate displacements, strains and stresses in initially stressed elastic solids subjected to static or time-dependent loading conditions. As a point of departure, we employ Hamilton's principle to obtain nonlinear equations of motion characterizing the displacement in a solid. The equations of motion reduce to linear equations of motion if incremental stresses are assumed to be infinitesimal. In the case of linear problem, finite element solutions are obtained by Newmark's direct integration method and by modal analysis. An analytic solution is referred to compare with the linear finite element solution. In the case of nonlinear problem, finite element solutions are obtained by Newton-Raphson iteration method and compared with the linear solution. Finally, the effect of the order of Gauss-Legendre numerical integration on the nonlinear finite element solution, has been investigated.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities

  • Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.255-265
    • /
    • 2017
  • In this paper, an efficient shear deformation theory is developed for wave propagation analysis in a functionally graded beam. More particularly, porosities that may occur in Functionally Graded Materials (FGMs) during their manufacture are considered. The proposed shear deformation theory is efficient method because it permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Material properties are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents; but the rule of mixture is modified to describe and approximate material properties of the functionally graded beams with porosity phases. The governing equations of the wave propagation in the functionally graded beam are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded beam is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions, the depth of beam, the number of wave and the porosity on wave propagation in functionally graded beam are discussed in details. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded beam.