• Title/Summary/Keyword: Hamilton'S Principle

Search Result 760, Processing Time 0.029 seconds

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes

  • M., Alimoradzadeh;S.D., Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.335-344
    • /
    • 2023
  • This investigation presents nonlinear free vibration of a carbon nanotube reinforced composite beam based on the Von Kármán nonlinearity and the Euler-Bernoulli beam theory The material properties of the structure is considered as made of a polymeric matrix by reinforced carbon nanotubes according to different material distributions. The governing equations of the nonlinear vibration problem is delivered by using Hamilton's principle and the Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained with the effect of different patterns of reinforcement.

Dynamic instability region analysis of reinforced-CNTs truncated conical shells using mixed DQ-Bolotin method

  • H. Vossough;F. Ahmadi;S. Golabi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • In this paper, dynamic buckling of truncated conical shell made of carbon nanotubes (CNTs) composite is studied. In aerospace industries, this category of structures is utilized extensively due to wide range of engineering applications. To calculate the effective material properties of the nanocomposite, The Mori-Tanaka model is applied. Also, the motion equations are derived with the assistance of the first order shear deformation theory (FSDT), Hamilton's principle and energy method. Besides, In order to solve motion equations and analyze dynamic instability region (DIR) of the structure, mixed model of differential quadrature method (DQM) and Bolotin's method is used. Moreover, investigation of the different parameters effects such as geometrical parameters and volume fraction of CNTs on the analysis of the DIR of the structure is done. In accordance with the obtained results, the DIR will occur at higher frequencies by increasing the volume fraction of CNTs.

Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation

  • Alimoradzadeh, M.;Akbas, S.D.
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.557-567
    • /
    • 2022
  • Nonlinear free vibration analysis of a functionally graded beam resting on the nonlinear viscoelastic foundation is studied with uniform temperature rising. The non-linear strain-displacement relationship is considered in the finite strain theory. The governing nonlinear dynamic equation is derived based on the finite strain theory with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The influences of temperature rising, material distribution parameter, nonlinear viscoelastic foundation parameters on the nonlinear free response and phase trajectory are investigated. In this paper, it is aimed that a contribution to the literature for nonlinear thermal vibration solutions of a functionally graded beam resting on the nonlinear viscoelastic foundation by using of multiple time scale method.

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine;R. Selvamani;F. Ebrahimi
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.337-357
    • /
    • 2024
  • This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

Non linear vibrations of stepped beam systems using artificial neural networks

  • Bagdatli, S.M.;Ozkaya, E.;Ozyigit, H.A.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained by using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Natural frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN) program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is drastically reduced compared with the conventional numerical techniques.

Nonlinear stability and bifurcations of an axially accelerating beam with an intermediate spring-support

  • Ghayesh, Mergen H.;Amabili, Marco
    • Coupled systems mechanics
    • /
    • v.2 no.2
    • /
    • pp.159-174
    • /
    • 2013
  • The present work aims at investigating the nonlinear dynamics, bifurcations, and stability of an axially accelerating beam with an intermediate spring-support. The problem of a parametrically excited system is addressed for the gyroscopic system. A geometric nonlinearity due to mid-plane stretching is considered and Hamilton's principle is employed to derive the nonlinear equation of motion. The equation is then reduced into a set of nonlinear ordinary differential equations with coupled terms via Galerkin's method. For the system in the sub-critical speed regime, the pseudo-arclength continuation technique is employed to plot the frequency-response curves. The results are presented for the system with and without a three-to-one internal resonance between the first two transverse modes. Also, the global dynamics of the system is investigated using direct time integration of the discretized equations. The mean axial speed and the amplitude of speed variations are varied as the bifurcation parameters and the bifurcation diagrams of Poincare maps are constructed.

Stability of beck's column with a rotatory spring restraining its free end (자유단이 회전스프링으로 구속된 Beck 기둥의 안정성)

  • Yun, Han-Ik;Im, Sun-Hong;Yu, Jin-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1385-1391
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column subjected to a concentrated follower force as to the influence of the elastic restraint and a tip mass at the free end. The elastic restraint is formed by the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of the considered system.

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.93-112
    • /
    • 2018
  • An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams.