• Title/Summary/Keyword: Halogenated aliphatic compounds

Search Result 11, Processing Time 0.035 seconds

Prediction of Sorption/Desorption Parameters of Halogenated Aliphatic Compounds Using QSAR (QSAR을 이용한 지방족 할로겐화합물 흡착 및 탈착 계수의 예측)

  • 김종오;박증석;최연돈
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.737-742
    • /
    • 2002
  • Sorption and desorption is an important phenomenon to determine the fate of halogenated aliphatic hydrocarbons in the aqueous phase. This study was conducted to develope a predictive equation capable of estimating the sorption and desorption potentials of halogenated aliphatic hydrocarbons onto the sludge from activated process, sediment, and clay. It has shown that the sorption and desorption parameters can be accurately estimated using Quantitative Structural Activity Relationship(QSAR) models based on molecular connectivity indexes of test compounds. The QSAR model could be applied to predict the sorption and desorption capacity of the other halogenated aliphatic hydrocarbons. The QSAR modeling would provide a useful tool to predict the sorption and desorption capacity without time-consuming experiments.

Sorption/Desorption Characteristics of Halogenated Aliphatic Compounds from Activated Sludge, Sediment, and Clay (지방족 할로겐화합물의 활성슬러지와 해안저질 및 점토에서의 흡탈착 특성)

  • 김종오;박종석;최연돈
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.961-969
    • /
    • 2002
  • This study was performed : 1) to establish the experimental analysis conditions for the sorption and desorption of toxic organic contaminants to/from the activated sludge, sediment, and clay, and 2) to determine the sorption and desorption equilibrium coefficients of some representative halogenated aliphatic compounds. Through the preliminary sorption test using Azo dye, a setting of quantitative experimental conditions to determine the sorption and desorption characteristics was decided as follows; equilibration time of 180 minutes, centrifuge for 15 minutes at 5000$\times$g, and 500mg/$\ell$ of TOC concentration. The sorption and desorption characteristics of halogenated aliphatic compounds onto activated sludge, sediment and clay could be described very well using the Freundlich isotherm. The preference of the average sorption capacity of the overall compounds showed in the sequence sediment 0.26mg/g, clay 0.23mg/g, and activated sludge 0.11 mg/g. The desorption rate of the sorbed compounds onto activated sludge, sediment and clay was approximately 89.8%, 35.3%, and 66.4%, respectively.

Temporal Characteristics of Volatile Organic Compounds in Newly-Constructed Residential Buildings: Concentration and Source

  • Shin, Seung-Ho;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.169-176
    • /
    • 2013
  • The present study was designed to examine the concentrations, emission rates, and source characteristics of a variety of volatile organic compounds (VOCs) in 30 newly-constructed apartment buildings by measuring indoor and outdoor VOC concentrations over a 2-year period. For comparison, seven villa-type houses were also surveyed for indoor and outdoor VOC concentrations over a 3-month period. Indoor and outdoor air samples were collected on Tenax-TA adsorbent and analyzed using a gas chromatograph (GC)/mass spectrometer system or a GC/flame ionization detector system coupled to a thermal desorption system. The long-term change in indoor VOC concentrations depended on the type of VOCs. Generally, aromatic (except for naphthalene), aliphatic, and terpene compounds exhibited a gradual deceasing trend over the 2-year follow-up period. However, the indoor concentrations of the six halogenated VOCs did not significantly vary with time changes. Similar to these halogenated VOCs, the indoor naphthalene concentrations did not vary significantly with time changes over the 2-year period. Unlike the halogenated VOCs, the indoor naphthalene concentrations were much higher than the outdoor concentrations. The indoor concentrations of aliphatic and aromatic compounds were higher for the villa-type houses when compared to those of apartment buildings. In addition, four source groups (floor coverings and interior painting, household products, wood paneling and furniture, moth repellents) and three source groups (floor coverings and interior painting, household products, and moth repellents) were considered as potential VOC sources inside apartment buildings for the first- and second-year post-occupancy stages, respectively.

The Identification and Anlaysis of C. bifermentans DPH, an Anaerobic Bacterium that can Dechlorinate by Reductive Dechlorination of Tetrachloroethylene or Other Halogenated Aliphatic Compounds (PCE 포함한 각종 유기염소화합물 분해능을 보유한 C. bifermentans DPH 균주의 동정 및 성질)

  • Chang, Young-Cheol;Jeong, Kweon;Yoo, Young-Sik;Kim, Min-Young;Shin, Jae-Young
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.6-13
    • /
    • 2000
  • PCE(tetrachloroethylene) 분해능을 보유한 그람 양성, 내생포자 형성의 혐기성균이 일본 기후현의 한 전자제품공장으로부터 분리되었다. 이 균은 생화학적 특성 및 16S rRNA 분석결과에 의하여 C. bifermentans인 것을 거쳐 cDCE(cis-1,2-dichloroethylene)로 전환되었다. 전자공여체로서 효모엑기스는 PCE 분해에 있어 가장 효과적이었으며 효모엑기스를 공급한 조건에서의 PCE 탈염소화 속도는 0.41 $\mu$mol/h.mg protein 이었다. 한편 본 균주는 PCE 뿐만 아니라 각종 유기염소화합물에 대해서도 분해능을 보유하고 있는 신종의 PCE 분해균으로서 각종 유기염소화합물에 오염된 지하수 및 토양에서의 In situ bioremediation 적용에 있어 유용할 것으로 기대된다.

  • PDF

Evaluation of Fugitive Emission Characteristics of Airborne Volatile Organic Compounds from Different Source Categories (발생원 유형에 따른 공기 중 휘발성 유기화합물의 비산배출 특성 평가)

  • 백성옥;김미현;서영교
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.363-376
    • /
    • 2003
  • In this study, the fugitive emission characteristics of airborne volatile organic compounds from different source categories were evaluated with respect to the concentrations measured in the vicinity of the sources. A total of 22 different sources were investigated, including gasoline storage and filling stations, painting spray booth, laundry, printing officer, textile industries, and a number of environmental sanitary facilities such as landfill, wastewater treatment and incineration plants. The target VOCs included 83 individual compounds, which were determined by adsorption sampling and thermal desorption coupled with GC/MS analysis. Overall, the aliphatic compounds appeared to be the most abundant class of compounds in terms of their concentrations, followed by aromatic, and halogenated hydrocarbons. As a single compound, however, toluene was the most abundant one, explaining 11% of the total VOC concentrations as an average of all the dataset. Among source categories, petroleum associated sources such as gasoline storage/filling stations, and laundry factory were identified as the most significant sources of aliphatic hydrocarbons, while aromatic VOCs were dominantly emitted from the sources handling organic solvents, such as painting booth, printing offices, and textile dyeing processes. However. there was no apparent pattern in terms of the contributions of eath group to the total VOCs concentrations in environmental sanitary facilities. It was also found that the activated carbon adsorption tower installed for the VOC emission control in some facilities do not show any effective performances, which may result in the increased VOC levels in the ambient atmosphere.

Characterization of a Newly Isolated cis-1,2-Dichloroethylene and Aliphatic Compound-Degrading Bacterium, Clostridium sp. Strain KYT-1

  • Kim, Eun-Sook;Nomura, lzumi;Hasegawa, Yuki;Takamizawa, Kazuhiro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.553-556
    • /
    • 2006
  • A cis-1,2-dichloroethylene (cis-DCE)-degrading anaerobic bacterium, Clostridium sp. strain KYT-1, was isolated from a sediment sample collected from a landfill site in Nanji-do, Seoul, Korea. The KYT-1 strain is a gram-positive, endospore-forming, motile, rod-shaped anaerobic bacterium, of approximately $2.5{\sim}3.0\;{\mu}m$ in length. The degradation of cis-DCE is closely related with the growth of the KYT-1 strain, and it was stopped when the growth of the KYT-1 strain became constant. Although the pathway of cis-DCE degradation by strain KYT-1 remains to be further elucidated, no accumulation of the harmful intermediate, vinyl chloride (VC), was observed during anaerobic cis-DCE degradation. Strain KYT-1 proved able to degrade a variety of volatile organic compounds, including VC, isomers of DCE (1,1-dichloroethylene, trans-1,2-dichloroethylene, and cis-DCE), trichloroethylene, tetrachloroethylene, 1,2-dichloroethane, 1,1,1-trichloroethane, and 1,1,2-trichloroethane. Strain KYT-1 degraded cis-DCE at a range of temperatures from $15\;to\;37^{\circ}C$, with an optimum at $30^{\circ}C$, and at a pH range of 5.5 to 8.5, with an optimum at 7.0.

Biochemical and molecular characterization of a tetrachloroethylene (PCE) dechlorinating Clostridium bifermentans DPH-1

  • Chang, Young-Cheol;Toyama, Tadashi;Kikuchi, Shintaro
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.1-18
    • /
    • 2008
  • The tetrachloroethylene (PCE) dehalogenase of Clostridium bifermentans DPH-1 (a halorespiring organism) was purified, cloned, and sequenced. This enzyme is a homodimer with a molecular mass of ca. 70 kDa and exhibits dehalogenation of dichloroethylene isomers along with PCE and trichloroethylene (TCE). Broad range of substrate specificity for chlorinated aliphatic compounds (PCE, TCE, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethylene, 1,2-dichloropropene, and 1,1,2-trichloroethane) for this enzyme was also observed. A mixture of propyl iodide and titanium citrate caused a light-reversible inhibition of enzymatic activity suggesting the involvement of a corrinoid cofactor. A partial sequence (81 bp) of the encoding gene for PCE dehalogenase was amplified and sequenced with degenerateprimers designed from the N-terminal sequence (27 amino acid residues). Southern analysis of C. bifermentans genomic DNA using the polymerase chain reaction product as a probe revealed restriction fragment bands. A 5.0 kb ClaI fragment, harboring the relevant gene (designated pceC) was cloned (pDEHAL5) and the complete nucleotide sequence of pceC was determined. The gene showed homology mainly with microbial membrane proteins and no homology with any known dehalogenase, suggesting a distinct PCE dehalogenase. So, C. bifermentans could play some important role in the initial breakdown of PCE and other chlorinated aliphatic compounds in sites contaminated with mixtures of halogenated substances.

Characterization of odourous compounds in air, leachate, stream and well in and around Taju-Bello Dumpsite, Lagos, Nigeria

  • Azeez, L.;Oyedeji, O.A.;Abdulsalami, I.O.;Adewuyi, S.O.
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.143-153
    • /
    • 2013
  • This study investigated the concentrations of odourous compounds in air, leachate, stream and well in and around Taju-Bello dumpsite. Meteorological parameters (temperature, relative humidity, wind velocity) and six odour families comprising sulphur ($H_2S$), ammonia ($NH_3$), aromatic (benzene, toluene, ethylbenzene, styrene, p-xylene, m-xylene), aliphatic (hexane), oxygenated (formaldehyde, acetaldehyde) and halogenated (tetrachloroethene, trichloroethene, carbontetrachloride) compounds were measured. Meteorological parameters suggested low dispersal of pollutants at L1 with possible perspiration and suffocation from exposure to high temperature, relative humidity and low wind velocity. The trend of abundance of odourous compounds at studied locations is of the order dumpsite (L1) > leachate (L4) > 100 m away from dumpsite (L2) > 200 m away from dumpsite (L3) > stream (L5) > well (L6). $H_2S$, Oxygenated and aromatic compounds were the major contributors to odour strength in these locations. Correlation, factor and cluster analyses of the data revealed similarities of sources as biogenics and xenobiotics inherent in the wastes as the main sources of these odourous compounds.