• Title/Summary/Keyword: Hall-sensor

Search Result 385, Processing Time 0.028 seconds

Development and evaluation of edge devices for injection molding monitoring (사출성형공정 모니터링용 엣지 디바이스 개발 및 평가)

  • Kim, Jong-Sun;Lee, Jun-Han
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.25-39
    • /
    • 2020
  • In this study, an edge device that monitors the injection molding process by measuring the mold vibration(acceleration) signal and the mold surface temperature was developed and evaluated its performance. During injection molding, signals of the injection start, V/P switchover, and packing end sections were obtained through the measurement of the mold vibration and the injection time and packing time were calculated by using the difference between the times of the sections. Then, the mold closed and mold open signals were obtained using a magnetic hall sensor, and cycle time was calculated by using the time difference between the mold closed time each process. As a result of evaluating the performance by comparing the process data monitored by the edge device with the shot data recorded on the injection molding machine, the cycle time, injection time, and packing time showed very small error of 0.70±0.38%, 1.40±1.17%, and 0.69±0.82%, respectively, and the values close to the actual were monitored and the accuracy and reliability of the edge device were confirmed. In addition, it was confirmed that the mold surface temperature measured by the edge device was similar to the actual mold surface temperature.

Effects of Substrate Temperature on Properties of Sb-doped SnO2 Thin Film

  • Do Kyung, Lee;Young-Soo, Sohn
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.371-375
    • /
    • 2022
  • Antimony-doped tin oxide (ATO) thin films, one type of transparent conductive oxide (TCO) films, were prepared on a SiO2-coated glass substrate with different substrate temperatures by a radio-frequency magnetron sputtering system. Structural, optical, and electrical characteristics of the deposited ATO films were analyzed using X-ray diffraction, scanning electron microscopy, alpha-step, ultraviolet-visible spectrometer, and Hall effect measurement. The substrate temperature during deposition did not affect the basic crystal structure of the films but changed the grain size and film thickness. The optical transmittance of the ATO films deposited at different substrate temperatures was over 70%. The lowest sheet resistance and resistivity were 8.43 × 102 Ω/sq, and 0.3991 × 10-2 Ω·cm, respectively, and the highest carrier concentration and mobility were 2.36 × 1021 cm-3 and 6.627 × 10-2 cm2V-1s-1, respectively, at a substrate temperature of 400 ℃.

Charging and Persistent-Current Mode Operating Characteristics of BSCCO Magnet Using High-Tc Superconducting Power Supply (고온 초전도 전원장치를 이용한 BSCCO Magnet의 충전 및 영구전류 운전 특성)

  • Jo, Hyun-Chul;Yang, Seong-Eun;Kim, Young-Jae;Hwang, Young-Jin;Yoon, Yong-Soo;Chung, Yoon-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • This paper deals with charging and persistent-current mode operating characteristics of BSCCO magnet load using high-temperature superconducting (HTS) power supply. The HTS power supply consists of two heater-triggered switches, an iron-core transformer with the primary copper winding and the secondary BSCCO solenoid, and a BSCCO magnet load. The magnet load was fabricated by double pancake winding and its inductance is about 21 mH. A hall sensor was installed at the middle of the magnet load to measure the current in the load. In order to investigate the efficient pumping characteristics, operating tests of heater-triggered switch with respect to dc heater current were carried out, and the electromagnet current was determined by considering saturation characteristics of its iron core. The saturation characteristics of charged current in the magnet load were observed with respect to various pumping periods: 12 s, 14 s, 24 s and 32 s. After charging the magnet load, the persistent current was measured. The operating characteristics of the persistent current mode were mainly determined by joint resistance and magnet load.

The vortex dynamics in $Bi_2$$Sr_2$Ca$Cu_2$$O_8$single crystals unirradiated and with low-density columnar defect (저밀도 원통형 결함이 $Bi_2Sr_2CaCu_2O_8$ 단결정의 볼텍스 동역학에 미치는 영향)

  • Lee, T.W.;Lee, C.W.;Shim, S.Y.;Ha, D.H.;Kim, D.H.
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • We have studied vortex dynamics in$ Bi_2$$Sr_2$$CaCu_2$O$_{8}$single crystals of unirradiated and irradiated samples by using 100 $\times$ $100\mu\textrm{m}^2$Hall sensor. Doses equivalent magnetic fields are 20 G, 100 G and 1 kG. In the magnetization measurement, a second magnetization peak (SMP) was observed in unirradiated, 20 G dose and 100 G dose samples in contrast to 1 kG dose sample. In the unirradiated sample, the SMP was observed in the range of 18 K ~ 35 K and the amplitude of the SMP decreased with increasing temperature. With increase of the irradiation dose, temperature region and sharpness of the SMP were reduced. In the magnetic relaxation measurement, we observed that the normalized relaxation rate S decreased with increasing the irradiation dose. Our results suggest that the vortex dynamics is not greatly affected by low-density columnar defects.s.

  • PDF

Construction of sports hall flooring with excellent properties by nanocomposites

  • Xianfang Zhang
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 2024
  • The rapid evolution of intelligent sports equipment and gadgets has led to the transformation of smartphones into personalized coaching devices. This transformative role is central in today's technologically advanced landscape, addressing the needs of individuals with contemporary lifestyles. The development of intelligent sports gadgets is geared towards elevating overall quality of life by facilitating sports activities, workouts, and promoting health preservation. This categorization yields two primary types of devices: smart sports devices for exercise and smart health control devices, which encompass functionalities such as blood pressure monitoring and muscle volume measurement. Illustrative examples include smart headbands, smart socks, smart wristbands, and smart shoe soles. Significantly, the global market for smart sports devices has garnered substantial popularity among enthusiasts. Moreover, the integration of sensors within these devices has instigated a revolution in group and professional sports, facilitating the calculation of impact intensity and ball speed. The utilization of various types of smart sports equipment has proliferated, encompassing applications in both sports' performance and health monitoring across diverse demographics. This article conducts an assessment of the application of nanotechnology in the continuous modeling of the magnetic electromechanical sensor integrated within smart shoe soles, with a specific emphasis on its implementation in soccer training. The exploration delves into the nuanced intersection of nanotechnology and sports equipment, elucidating the intricate mechanisms that underlie the transformative impact of these advancements.

Brief Review on Measurement Devices for the Plasma Diagnosis of Satellite Electric Propulsion Systems (인공위성 전기추진기관의 상태 진단을 위한 플라즈마 측정 장비 구성에 관한 고찰)

  • Jingeon Kim;Seungmin Guk;Minwoo Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.216-223
    • /
    • 2024
  • Electric propulsion systems, including electrothermal, electrostatic, and electromagnetic thrusters, are promising systems for producing thrust from satellites. These systems generally operate under vacuum plasma conditions and exhibit high specific impulses and thrust-to-weight ratios. Despite their high efficiencies, electric propulsion systems are susceptible to performance variations due to physical factors such as plasma instabilities, which require an accurate diagnosis of their status during operation. In this study, we review various measurement systems adopted to diagnose electric propulsion systems operating under vacuum conditions. Specifically, we review electrical, optical, and other methods that can directly or indirectly measure the status of a thruster, with a particular focus on Hall effect thrusters. The system configurations and fundamental mechanisms of the different measurement systems are described based on case studies of the diagnosis of propulsion systems. We anticipate that this study will contribute to the efficient development and safe operation of electric propulsion systems for use in artificial satellites.

Growth of CdSe thin films using Hot Wall Epitaxy method and their photoelectrical characteristics (HWE방법에 의한 CdSe 박막 성장과 광전기적 특성)

  • Hong, K.J.;Lee, K.K.;Lee, S.Y.;You, S.H.;Shin, Y.J.;Suh, S.S.;Jeong, J.W.;Jeong, K.A.;Shin, Y.J.;Jeong, T.S.;Kim, T.S.;Moon, J.D.;Kim, H.S.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.328-336
    • /
    • 1997
  • The CdSe thin films were grown on the Si(100) wafers by a hot wall epitaxy method (HWE). The source and substrate temperature are $600^{\circ}C$ and $430^{\circ}C$ respectively. The crystalline structure of epilayers was investigated by double crystal X-ray diffraction(DCXD). Hall effect on the sample was measured by the van der Pauw method and studied on the carrier density and mobility dependence on temperature. From Hall data, the mobility was increased in the temperature range 30K to 150K by impurity scattering and decreased in the temperature range 150k to 293k by the lattice scattering. In order to explore the applicability as a photoconductive cell, we measured the sensitivity(${\gamma}$), the ratio of photocurrent to darkcurrent(pc/dc), maximum allowable power dissipation(MAPD), spectral response and response time. The results indicated that the photoconductive characteristic were the best for the samples annealed in Cu vapor compare with in Cd, Se, air and vacuum vapour. Then we obtained the sensitivity of 0.99, the value of pc/dc of $1.39{\times}10^{7}$, the MAPD of 335mW, and the rise and decay time of 10ms and 9.5ms, respectively.

  • PDF

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate (누설자속 기반 강판 두께별 국부 손상 진단 감도 분석)

  • Kim, Ju-Won;Yu, Byoungjoon;Park, Sehwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.

Growth and Characterization of $CdGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 특성)

  • Choi, S.P.;Hong, K.J.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.328-337
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ}$, X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

Study on Growth and Opto-Electrical Characterization of $CdS_{1-x}Se_{x}$ Thin Film using Chemical Bath Deposition Method (CBD 방법에 의한 $CdS_{1-x}Se_{x}$ 박막의 열처리에 따른 광전기적 특성)

  • Hong, K.J.;Choi, S.P.;Lee, S.Y.;You, S.H.;Shin, Y.J.;Lee, K.K.;Suh, S.S.;Kim, H.S.;Yun, E.H.;Kim, S.U.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;KIm, T.S.;Moon, J.D.;Jeon, S.L.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.51-63
    • /
    • 1995
  • Polycrystalline $CdS_{1-x}Se_{x}$ thin films were grown on ceramic substrate using a chemical bath deposition method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study $CdS_{1-x}Se_{x}$ polycrystal structure using extrapolation method of X-ray diffraction patterns for the CdS, CdSe samples annealed in $N_{2}$ gas at $550^{\circ}C$ it was found hexagonal structure which had the lattice constant $a_{0}=4.1364{\AA}$, $c_{0}=6.7129{\AA}$ in CdS and $a_{0}=4.3021{\AA}$, $c_{0}=7.0142{\AA}$ in CdSe, respectively. Hall effect on these samples was measured by Van der Pauw method and then studied on carrier density and mobility depending on temperature. We measured also spectral response, sensitivity(${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF