Acknowledgement
본 논문은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-004).
References
- D. Lev, R. M. Myers, K. M. Lemmer, J. Kolbeck, H. Koizumi, and K. Polzin, "The technological and commercial expansion of electric propulsion", Acta Astronaut., Vol. 159, pp. 213-227, 2019. https://doi.org/10.1016/j.actaastro.2019.03.058
- D. M. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Hoboken, John Wiley & Sons, NJ, pp. 1-481, 2008.
- H. Kim, S.-K. Kim, and S.-H. Won, "Current Status and Trends of Research and Development on Electric Thruster, Part I: Overseas", J. Korean Soc. Propuls. Eng., Vol. 23, No. 6, pp. 95-108, 2019. https://doi.org/10.6108/KSPE.2019.23.6.095
- M. Keidar, T. Zhuang, A. Shashurin, G. Teel, D. Chiu, J. Lukas, S. Haque, and L. Brieda, "Electric propulsion for small satellites", Plasma Phys. Control. Fusion, Vol. 57, No. 1, pp. 014005(1)-014005(11), 2014.
- H. R. Kaufman and R. S. Robinson, "Electric thruster performance for orbit raising and maneuvering", J. Spacecr. Rockets, Vol. 21, No. 2, pp. 180-186, 1984. https://doi.org/10.2514/3.8631
- M. Touzeau, M. Prioul, S. Roche, N. Gascon, C. Perot, F. Darnon, S. Bechu, C. Philippe-Kadlec, L. Magne, P. Lasgorceix, D. Pagnon, A. Bouchoule, and M. Dudeck, "Plasma diagnostic systems for Hall-effect plasma thrusters", Plasma Phys. Control. Fusion, Vol. 42, No. 12B, pp. B323-339, 2000. https://doi.org/10.1088/0741-3335/42/12B/324
- E. Han, D. Kim, J. Lee, Y. Kim, and Minwoo Lee, "Analysis of the Hall-Effect Thruster Discharge Blowoff Using Complexity-Entropy Causality Plane", J. Korean Soc. Aeronaut. Space Sci., Vol. 51, No. 4, pp. 263-271, 2023. https://doi.org/10.5139/JKSAS.2023.51.4.263
- M. Lee, D. Kim, J. Lee, Y. Kim and M. Yi, "A data-driven approach for analyzing Hall thruster discharge instability leading to plasma blowoff", Acta Astronaut., Vol. 206, pp. 1-8, 2023. https://doi.org/10.1016/j.actaastro.2023.02.017
- B. E. Cherrington, "The use of electrostatic probes for plasma diagnostics-A review", Plasma Chem. Plasma Process., Vol. 2, pp. 113-140, 1982. https://doi.org/10.1007/BF00633129
- M. R. Nakles and W. A. Hargus Jr., "Background pressure effects on ion velocity distribution within a medium-power Hall thruster", J. Propuls. Power, Vol. 27, No. 4, pp. 737- 743, 2011. https://doi.org/10.2514/1.48027
- R. B. Lobbia and B. E. Beal, "Recommended Practice for Use of Langmuir Probes in Electric Propulsion Testing", J. Propuls. Power, Vol. 33, No. 3, pp. 566-581, 2017. https://doi.org/10.2514/1.B35531
- J. Linnell and A. Gallimore, "Internal Langmuir probe mapping of a Hall thruster with Xenon and Krypton propellant", Proc. of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp. 4470(1)-4470(18), Sacramento, USA, 2006.
- R. Eckman, L. Byrne, N. A. Gatsonis, and E. J. Pencil, "Triple Langmuir probe measurements in the plume of a pulsed plasma thruster", J. Propuls. Power, Vol. 17, No. 4, pp. 762-771, 2001. https://doi.org/10.2514/2.5831
- C.-Z. Cheng and K. Oyama, An Introduction to Space Instrumentation, Tokyo, Terrapub, JP, pp. 1-240, 2013.
- I. D. Sudit and R. C. Woods, "A study of the accuracy of various Langmuir probe theories", J. Appl. Phys., Vol. 76, No. 8, pp. 4488-4498, 1994. https://doi.org/10.1063/1.357280
- K. Oyama, "DC Langmuir probe for measurement of space plasma: A brief review", J. Astron. Space Sci., Vol. 32, No. 3, pp. 167-180, 2015. https://doi.org/10.5140/JASS.2015.32.3.167
- L. Oksuz, F. Soberon, and A. R. Ellingboe, "Analysis of uncompensated Langmuir probe characteristics in radio-frequency discharges revisited", J. Appl. Phys., Vol. 99, No. 1, p. 013304, 2006.
- B. Reid and A. Gallimore, "Langmuir probe measurements in the discharge channel of a 6-kW Hall thruster", Proc. of 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 4920, Hartford, USA, 2008.
- R. Shastry, W. Huang, T. W. Haag, and H. Kamhawi, "Langmuir Probe Measurements Within the Discharge Channel of the 20-kW NASA-300M and NASA-300MS Hall Thrusters", Proc. of International Electric Propulsion Conference (IEPC), pp. 1-24, Washington, D.C., USA, 2013.
- T. Andreussi, M. M. Saravia, and M. Andrenucci, "Plasma characterization in Hall thrusters by Langmuir probes", J. Instrum., Vol. 14, pp. C05011(1)-C05011(11), 2019.
- M. Tichy, A. Petin, P. Kudrna, M. Horky, and S. Mazouffre, "Electron energy distribution function in a low-power Hall thruster discharge and near-field plume", Phys. Plasmas, Vol. 25, No. 6, p. 061205, 2018.
- M. Keidar and I. D. Boyd, "Effect of a magnetic field on the plasma plume from Hall thrusters", J. Appl. Phys., Vol. 86, No. 9, pp. 4786-4791, 1999. https://doi.org/10.1063/1.371444
- Y. Azziz, "Experimental and theoretical characterization of a Hall thruster plume", Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2007.
- D. L. Brown and A. D. Gallimore, "Evaluation of ion collection area in Faraday probes", Rev. Sci. Instrum., Vol. 81, No. 6, pp. 063504(1)-063504(11), 2010.
- D. L. Brown, M. L. R. Walker, J. Szabo, W. Huang, and J. E. Foster, "Recommended practice for use of Faraday probes in electric propulsion testing", J. Propuls. Power, Vol. 33, No. 3, pp. 582-613, 2017. https://doi.org/10.2514/1.B35696
- Z. Zhang, Z. Zhang, S. Xu, W. Y. L. Ling, J. Ren, and H. Tang, "Three-dimensional measurement of a stationary plasma plume with a Faraday probe array", Aerosp. Sci. Technol., Vol. 110, p. 106480, 2021.
- T. Hallouin and S. Mazouffre, "Far-Field Plume Characterization of a 100-W Class Hall Thruster", Aerospace, Vol. 7, No. 5, pp. 58(1)-58(21), 2020. https://doi.org/10.3390/aerospace7050058
- W. Huang, R. Shastry, G. C. Soulas, and H. Kamhawi, "Fairfield Plume Measurement and Analysis on the NASA-300M and NASA-300MS", Proc. of International Electric Propulsion Conference (IEPC), pp. 1-35, Washington, D.C., USA, 2013.
- S. T. Lai and C. Miller, "Retarding potential analyzer: Principles, designs, and space applications", AIP Adv., Vol. 10, No. 9, pp. 095324(1)-095324(9), 2020.
- L. Fanelli, S. Noel, G. D. Earle, C. Fish, R. L. Davidson, R. V. Robertson, P. Marquis, V. Garg, N. Somasundaram, L. Kordella, and P. Kennedy, "A versatile retarding potential analyzer for nano-satellite platforms", Rev. Sci. Instrum., Vol. 86, No. 12, pp. 124501(1)-124501(13), 2015.
- F. Valsaque, G. Manfredi, J. P. Gunn, and E. Gauthier, "Kinetic simulations of ion temperature measurements from retarding field analyzers", Phys. Plasmas, Vol. 9, No. 5, pp. 1806-1814, 2002. https://doi.org/10.1063/1.1463416
- L. L. Su, P. J. Roberts, T. Gill, W. Hurley, T. A. Marks, C. L. Sercel, M. Allen, C. B. Whittaker, M. Byrne, Z. Brown, E. Viges, and B. Jorns, "Operation and Performance of a Magnetically Shielded Hall Thruster at Ultrahigh Current Densities on Xenon and Krypton", Proc. of AIAA SCITECH 2023 Forum, pp. 0842(1)-0842(32), National Harbor, USA, 2023.
- J. Ekholm and W. Hargus, "E x B measurements of a 200 W xenon Hall thruster", Proc. of 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp. 4405(1)-4405(10), Tucson, USA, 2005.
- Y. Wang, X. Zhu, R. Zou, S. Yan, J. Jia, Z. Ning, and D. Yu, "A novel optical emission spectroscopy method for diagnostics of contribution of different ionization mechanisms and flux of ions in different valences in discharge channel of a Hall Thruster", Chinese J. Aeronaut., Vol. 37, No. 4, pp. 294-307, 2024.
- J. W. M. Lim, I. Levchenko, S. Huang, L. Xu, R. Z. W. Sim, J. S. Yee, G.-C. Potrivitu, Y. Sun, K. Bazaka, X. Wen, J. Gao and S. Xu, "Plasma parameters and discharge characteristics of lab-based krypton-propelled miniaturized Hall thruster", Plasma Sources Sci. Technol., Vol. 28, No. 6, p. 064003, 2019.
- T. Belmonte, C. Noel, T. Gries, J. Martin, and G. Henrion, "Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas", Plasma Sources Sci. Technol., Vol. 24, No. 6, p. 064003, 2015.
- Y.-F. Wang and X.-M. Zhu, "An optical emission spectroscopy method for determining the electron temperature and density in low-temperature xenon plasma by using a collisional-radiative model considering the hyperfine structure of emission line into metastable state", Spectrochim. Acta Part B At. Spectrosc., Vol. 208, p. 106777, 2023.
- R. P. Lucht, "Applications of Laser-Induced Fluorescence Spectroscopy for Combustion and Plasma Diagnostics", in Laser spectroscopy and its applications, R. W. Solarz, and J. A. Paisner, Eds. CRC Press, Boca Raton, pp. 623-676, 2017.
- R. J. Cedolin, W. A. Hargus Jr., P. V. Storm, R. K. Hanson, and M. A. Cappelli, "Laser-induced fluorescence study of a xenon Hall thruster", Appl. Phys. B, Vol. 65, pp. 459-469, 1997. https://doi.org/10.1007/s003400050297
- H. Kang, M. Lee, and K. T. Kim, "Measurements of self-excited instabilities and nitrogen oxides emissions in a multi-element lean-premixed hydrogen/methane/air flame ensemble", Proc. Combust. Inst., Vol. 39, No. 4, pp. 4721-4729, 2023. https://doi.org/10.1016/j.proci.2022.07.258
- M. Kwasny and A. Bombalska, "Applications of laser-induced fluorescence in medicine", Sensors, Vol. 22, No. 8, pp. 2956(1)-2956(12), 2022. https://doi.org/10.1109/JSEN.2021.3136033
- S. Mazouffre, "Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters", Plasma Sources Sci. Technol., Vol. 22, No. 1, pp. 013001(1)-013001(22), 2012.
- R. Spektor and W. G. Tighe, "Laser induced fluorescence measurements in a hall thruster as a function of background pressure", Proc. of 52nd AIAA/SAE/ASEE Joint Propulsion Conference, pp. 4624(1)-4624(7), Salt Lake City, USA, 2016.
- G. Doh, H. Kim, D. Lee, S. Park, S. Mazouffre, and W. Choe, "Structure of the ion acceleration region in cylindrical Hall thruster plasmas", J. Phys. D Appl. Phys., Vol. 55, No. 22, pp. 225204(1)-225204(15), 2022.
- I. Romadanov, Y. Raitses, A. Diallo, K. Hara, I. D. Kaganovich, and A. Smolyakov, "On limitations of laser-induced fluorescence diagnostics for xenon ion velocity distribution function measurements in Hall thrusters", Phys. Plasmas, Vol. 25, No. 3, pp. 033501(1)-033501(7), 2018.
- M. Lee, K. T. Kim, and J. Park, "A numerically efficient output-only system-identification framework for stochastically forced self-sustained oscillators", Probabilistic Eng. Mech., Vol. 74, pp. 103516(1)-103516(17), 2023.
- H. Son and M. Lee, "Continuous probabilistic solution to the transient self-oscillation under stochastic forcing: a PINN approach", J. Mech. Sci. Technol., Vol. 37, No. 8, pp. 3911-3918, 2023. https://doi.org/10.1007/s12206-023-0707-z
- L. B. King and A. D. Gallimore, "Gridded retarding pressure sensor for ion and neutral particle analysis in flowing plasmas", Rev. Sci. Instrum., Vol. 68, No. 2, pp. 1183-1188, 1997. https://doi.org/10.1063/1.1147881
- S. Shinohara, D. Kuwahara, Y. Ishigami, H. Horita, and S. Nakanishi, "Extremely small-diameter, high-density, radio frequency, plasma sources and central gas feeding for next-generation electrodeless plasma thrusters", Rev. Sci. Instrum., Vol. 91, No. 7, pp. 073507(1)-073507(13), 2020.