Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.476-477
/
2013
반도체의 성능은 최근 10년 사이에 급격하게 발전했고 아날로그 및 디지털 회로 소자들에 있어 저전력/고속 특성 요구가 커지고 있다 [1]. 상온에서 30,000 $cm^2$/Vs 이상의 전자 이동도를 가지며 큰 conduction band offset을 갖는 InAs/AlSb 2차원전자가스(2DEG) 소자는 Spinorbit-interaction의 값이 매우 커서 SPIN-FET 소자로 크게 주목받고 있다 [2]. 본 발표자들은 GaAs 기판위에 성장한 InAs 2DEG HEMT 소자의 전/자기적인 특성과 고속반응 물질로 주목 받는 InSb 박막소자의 doping 특성에 따른 전기적/물리적인 특성의 평가에 대해 그 결과를 소개하고자 한다. 격자정합과 Semi-insulating 기판의 부재로 상용화되어 있는 GaAs와 InP 기판위에 물질차이에 따른 고유의 한계 특성을 줄이기 위한 Pseudomorphic이라 불리는 특별한 박막 성장 기법을 적용하여 높은 전자 이동도를 가지며 spin length가 길어 Spin-FET로서 크게 주목받고 있는 InAs 2DEG HEMT 소자를 완성시켰다. 60,000 ($cm^2$/Vs) 이상의 높은 전자 이동도를 갖는 소자의 구현을 목표로 연구를 진행하였으며 1.8 K에서 측정된 Spin-orbit interaction의 값은 6.3e-12 (eVm)이다. InAs/InGaAs/InAlAs 및 InGaAs/InAlAs 구조의 InP 기반의 소자에서 보다 큰 값으로 향후 Spin-FET 응용에 크게 기대하고 있다. 또한, GaAs 기판위에 구현된 InSb 소자는 격자부정합 감소를 위해 InAs 양자점을 사용하여 약 $2.6{\mu}m$ 두께로 구현된 InSb 박막 소자는 상온에서 약 60,400 ($cm^2$/Vs)의 상온 전자이동도를 보였으며 현재 동일 두께에서 세계 최고결과(~50,000 $cm^2$/Vs)에 비해 월등하게 높은 값을 보이고 있다. Hall bar pattern 공정을 거쳐 완성된 소자는 측정 결과 10~20% 이상 향상된 전자 이동도를 보였다. 2e18/$cm^3$ 미만의 p-doping의 경우, 상온에서 n-type 특성을 보이나, 저온에서 p-type으로 변하는 특성을 보였고 n-doping의 경우 5e17/$cm^3$까지는 전자 이동도만 감소하고, doping에 의한 효과는 크게 없었다. 1e18/$cm^3$의 높은 doping을 할 경우 carrier가 증가하는 것을 확인했다. 이상의 측정 결과로 Spin-FET 소자로서 아주 우수하다는 것을 확인할 수 있었고 n-/p- type이 특성을 고려한 high quality InSb 박막소자의 응용을 위한 중요한 정보를 얻을 수 있었다.
The III-V ternary alloy semiconductor $In_{l-x}Ga_{x}As$ were grown by the temperature Gradient of $0.60{\leq}x{\leq}0.98$. The electrical properties were investigated by the Hall effect measurement with the Van der Pauw method in the temperature range of $90{\sim}300K$. $In_{l-x}Ga_{x}As$ were revealed n-type and the carrier concentration at 300K were in the range of $9.69{\times}10^{16}cm^{-3}{\sim}7.49{\times}10^{17}cm^{-3}$. The resistivity was increased and the carrier mobility was decreased with increasing the composition ratio. The optical energy gap determined by optical transmission were $20{\sim}30meV$ lower than theoretical valves on the basis of absorption in the conduction band tail and it was decreased with increasing the temperature by the Varshni rule. In the photoluminescence of undoped $In_{l-x}Ga_{x}As$ at 20K, the main emission was revealed by the radiative recombination of shallow donor(Si) to acceptor(Zn) and the peak energy was increased with increasing the composition, X. The diffusion depth of Zn increases proportionally with the square root of diffusion time, and the activation energy for the Zn diffusion into $In_{0.10}Ga_{0.90}As$ was 2.174eV and temperatures dependence of diffusion coefficient was D = 87.29 exp(-2.174/$K_{B}T$). The Zn diffusion p-n $In_{x}Ga_{x}As$ diode revealed the good rectfying characteristics and the diode factor $\beta{\approx}2$. The electroluminescence spectrum for the Zn-diffusion p-n $In_{0.10}Ga_{0.90}As$ diode was due to radiative recombation between the selectron trap level(${\sim}140meV$) and Zn acceptor level(${\sim}30meV$). The peak energy and FWHM of electroluminescence spectrum at 77K were 1.262eV and 81.0meV, respectively.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.11a
/
pp.50-50
/
2008
ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.
Park, Chang-Sun;Hong, Kwang-Joon;Park, Jin-Sun;Lee, Bong-Ju;Jeong, Jun-Woo;Bang, Jin-Ju;Kim, Hyun
Journal of Sensor Science and Technology
/
v.13
no.2
/
pp.157-167
/
2004
A stoichiometric mixture of evaporating materials for $CuAlSe_{2}$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_{2}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_{2}$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}cm^{-3}$ and $295cm^{2}/V{\codt}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$ = 2.8382 eV - ($8.68{\circ}10^{-4}$ eV/K)$T^{2}$/(T + 155 K). The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_{2}$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $CuAlSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-}$, $B_{1-}$, and $C_{1-}$ exciton peaks for n = 1.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.337-337
/
2014
투명 전도성 산화물(transparent conductive oxide: TCO) 박막은 높은 투과율과 낮은 비저항 덕분에 LCD (liquid crystal display), PDP (plasma display panel), OLED (organic light emitting display) 등 평판 디스플레이에 널리 사용되고 있다. 현재 양산되고 있는 ITO (indium tin oxide)는 90% 이상의 높은 투과율과 우수한 전도성으로 인해 TCO 박막 가운데서 디스플레이 산업에서 가장 널리 쓰이고 있다. 그런데, ITO의 인듐산화물에 의한 간질성 폐렴(interstitial pneumonia)의 유발 위험이 있다든가, 인듐의 매장량이 적어 원자재 가격이 비싼 단점도 가지고 있다. 이에 최근 ITO를 대체할 수 있는 TCO물질로 많은 연구가 이루어지고 있는데, 특히 AZO (aluminum-doped zinc oxide)는 그 중 대표적인 대체물질로서 독성이 없고 가격도 저렴하여 많은 관심이 증폭되고 있다. 현재 AZO는 sol-gel 방법이나 CVD (chemical vapor deposition) 또는 스퍼터링 방법 등으로 증착되고 있다. 본 연구에서는 두 개의 이종타겟(hetero target)을 장착한 대향 타겟 스퍼터링(facing target sputtering: FTS) 장치를 사용하여 AZO 박막을 제작한다. 기존의 여러 증착법과 달리, FTS 장치는 두 타겟 사이에 형성되는 플라즈마 내의 ${\gamma}$-전자를 구속하게 되며, 낮은 가스 압력에서 고밀도 플라즈마가 생성되어 빠른 증착 속도와 안정적인 방전을 유지한 상태에서 박막을 증착할 수가 있다. 또한 기판과 플라즈마가 이격되어 있어 높은 에너지를 갖는 입자들의 기판 충돌을 억제할 수 있는 장점들을 갖는다. 이종 타겟인 ZnO와 Al2O3를 사용하고 각 타겟에 인가되는 파워 변화를 통해 AZO 박막 내 Al2O3의 성분비를 조절하였다. ZnO 타겟의 증착 파워를 100 W로 고정할 경우, Al2O3 타겟의 증착 파워가 (50~90) W으로 실험을 하였으며, Al2O3 타겟의 증착 파워가 70 W일 때 AZO 박막의 Al2O3 성분비는 2.02 wt.%이며 박막의 비저항 값은 $5{\times}10^{-4}{\Omega}{\cdot}cm$로 최소값을 보였다. 이러한 비저항의 변화는 파워에 따른 AZO 박막의 캐리어 이동도(Hall mobility)와 캐리어의 농도(Carrier Concentration)의 변화와 밀접한 관계가 있음을 보여주며, 특히 AZO 박막의 캐리어 농도와 캐리어 이동도는 AZO 박막을 형성하고 있는 결정립의 크기에 의존하는 것이 X-선 회절 패턴과 SEM으로부터 확인되었다. 특히, 본 연구에서는 두 개의 이종 타겟(hetero target) Al2O3와 ZnO를 장착하고 각각의 파워를 변화시켜 도핑 량을 조절할 수는 대향 타겟 스퍼터링(FTS: facing-target sputtering) 방법을 이용하여 제작된 AZO 박막에 대해 전기적, 광학적 및 구조적 특성을 분석하고 ITO의 대체물로서의 가능성을 검토하고자 한다.
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.295-295
/
2014
일반적으로 박막 태양전지의 효율은 박막 종류에 따른 광 흡수율에 의해 결정되며, 이는 증착한 박막의 두께에 의해 결정된다. 증착한 박막의 두께가 두꺼워질수록 광 흡수율은 증가하지만, 박막 두께가 지나치게 두꺼워지면 열화 현상으로 인한 모듈의 효율 감소가 생기므로 적절한 박막의 두께가 요구된다. 특히 a-Si:H의 경우 가시광 영역에서 높은 흡수계수를 가지고 있어서 얇은 박막 두께로도 태양전지의 제작이 가능하지만, 동일한 박막 두께에서 효율을 더욱 향상시키기 위한 다양한 광 포획 기술에 대한 연구가 많이 진행 되고 있다. 본 연구에서는 자외선을 이용한 nano-imprint lithography 기술을 이용하여 a-Si:H 태양전지의 유리기판 위에 pattern을 삽입하여 광 산란 효과를 향상 시키고자 하였다. 또한 유리기판의 굴절률 (n=1.5)과 투명전극의 굴절률 (n=1.9)의 중간 값을 갖는 ZnO nanoparticles (n=1.7)이 분산 된 imprinting resin을 사용함으로써 점진적으로 굴절률을 변화시켜, 최종적으로 a-Si:H 층까지의 광 투과율을 높이고자 하였다. 제작한 기판의 종류는 다음과 같다. 첫 번째 기판으로는 유리기판 위에 ZnO nanoparticles이 분산 된 imprinting resin을 spin-coating 하여 점진적인 굴절률의 변화에 의한 투과도 향상을 확인하고자 하였다. 두 번째 기판으로는 규칙적인 배열을 갖는 micro 크기의 패턴을 형성하였다. 마지막으로는 불규칙한 배열을 갖는 nano 크기와 micro 크기가 혼재 된 패턴을 형성하여 투과도 향상과 동시에 빛의 산란을 증가시키고자 하였다. 후에 이 세가지 종류를 기판으로 사용하여 a-Si:H 기반의 박막 태양전지를 제작하였다. 먼저 제작한 박막 태양전지용 기판의 광학적 전기적 특성을 분석하였다. 유리 기판 위에 형성한 패턴에 의한 roughness 변화를 확인하기 위해 atomic force microscopy (AFM)를 이용하여 시편의 표면을 측정하였다. 또한 제작한 유리 기판 위에 투명 전극층을 형성 후, 이로 인한 전기적 특성의 변화를 확인하기 위해 hall measurement system을 이용하여 sheet resistance, carrier mobility, carrier concentration 등의 특성을 측정하였다. 또한, UV-visible photospectrometer 장비를 이용하여 각 공정마다 시편의 광학적 특성(투과도, 반사도, 산란도, 흡수도 등)을 측정하였고, 최종적으로 제작한 박막 태양전지의 I-V 특성과 외부양자효율을 측정하여 태양전지의 효율 변화를 확인하였다. 그 결과 일반적인 유리에 기판에 제작된 a-Si:H 기반의 박막 태양전지에 비해, ZnO nanoparticles이 분산 된 imprinting resin을 spin-coating 하여 점진적인 굴절률 변화를 준 것만으로도 약 12%의 태양전지 효율이 증가하였다. 또한, micro 크기의 패턴과 nano-micro 크기가 혼재된 패턴을 형성한 경우 일반적인 유리를 사용한 경우에 비해 각각 27%, 36%까지 효율이 증가함을 확인하였다.
Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.
A stoichiometric mixture of evaporating materials for $BaIn_2Se_4$ epilayers was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the epilayers was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2Se_4$ epilayers measured from Hall effect by van der Pauw method are $8.94{\times}10^{17}cm^{-3}$ and 343 $cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.6261 eV-$(4.9825{\times}10^{-3}eV/K)T^2/(T+558 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2Se_4$ have been estimated to be 116 meV and 175.9 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n=21.
Jeong, T. S.;Kim, H. S.;Yu, P. Y.;Shin, Y. J.;Shin, H. K.;Kim, T. S.;Jeong, C. H.;Lee, H.;SHin, Y. S.;Kang, S. K.;Jeong, K. S.;Hong, K. J.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.3
no.2
/
pp.125-130
/
1993
We has made 2-zone vertical electric furnace and has been grown CdS single crystal by sublimation method in crystal growth tube with tail tube without seed crystal for growth. While it has been growing, temperature difference ${\Delta}T$ of source and growth part has nearly agreed with theoritical value $14.7^{\circ}C$and experimental value $15^{\circ}C$ Then, crystal of best quality has been grown, when temperature of tail tube has been $110^{\circ}C$, in spite of quickly pulling up crystal growth tube a degree O.38mm per hour. The grown crystal have had hexagonal structure and single crystal with c-axis to length of crystal growth tube from X- ray diffraction pattern of powder method and Laue pattern of back reflection Laue method. Also, the mobility and carrier density from Hall effect measurement have been $316cm^2/V{\cdot}sec$ and $2.90{\times}10^{16}cm^{-3}$ at the room temperature, respectively.
A stoichiometric mixture of evaporating materials for $BaAl_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaAl_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaAl_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.29{\times}10^{-16}cm^{-3}$ and $278cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaAl_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.4205eV-(4.3112{\times}10^{-4}eV/K)T^2/(T+232 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaAl_2Se_4$ have been estimated to be 249.4 meV and 263.4 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n =1 and $C_{31}$-exciton peaks for n=31.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.