• Title/Summary/Keyword: Hall effects

Search Result 255, Processing Time 0.026 seconds

Arbuscular Mycorrhizal Fungus Inoculation Effect on Korean Ash Tree Seedlings Differs Depending upon Fungal Species and Soil Conditions (아버스큘 균근균(菌根菌) 접종(接種)이 균종(菌種)과 토양상태(土壤狀態)에 따라 물푸레나무 묘목(苗木)의 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.466-475
    • /
    • 1997
  • I examined arbuscular mycorrhizal(AM) fungus inoculation effects on the seedling growth of Korean ash tree(Fraxinus rhynchophylla Hance), which distributes in fertile mesic soils, under a seven-day watering cycle of water stress and compost-added fertile conditions. Three Korea-native AM fungi were inoculated : an unidentified Glomus species, Gigaspora margarita Becker & Hall and Scutellospora heterogama(Nicol. & Gerd) Walker & Sanders from disturbed forest soils. The effect of AM fungus inoculation on the seedling varied depending upon fungal species and soil conditions. AM formation was 27 to 65% by the Glomus without forming spores, 47 to 74% with about 10 spores per 20g soil by G. margarita and about 65% with 35 spores by S. heterogama. The soil conditions did not affect either AM or spore formation. The Glomus inoculation increased shoot N and P concentrations, but did not affect seedling growth. G. margarita increased shoot N and P, irrespective of soil conditions, in general, but S. heterogama increased N under water stress and Pin the control soil only. These two fungi significantly increased seedling growth in both control and water stress soils. Compost addition increased the growth of non-mycorrhizal seedlings and offset AM fungus inoculation effects. The relative field mycorrhizal dependency(RFMD) of the seedlings was significant only in control and water stress soils by over 40% in G. margarita or S. heterogama AM plants. Under water stress RFMD was the most evident in S. heterogama AM plants. I conclude that some AM fungi such as G, margarita and S. heterogama can broaden the niche of Korean ash seedlings to a water stress or nutrient poor site but less likely to more fertile sites.

  • PDF

Extract from Eucheuma cottonii Induces Apoptotic Cell Death on Human Osteosarcoma Saos-2 Cells via Caspase Cascade Apoptosis Pathway (Eucheuma cottonii 추출물에 의한 인체 골육종암 Saos-2 세포의 자가사멸 유도)

  • Kang, Chang-Won;Kang, Min-Jae;Kim, Kyong Rok;Kim, Nan-Hee;Seo, Yong Bae;Kang, Keon-Hee;Kim, Sang-Ho;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • Osteosarcoma (OS) is the most common and malignant bone tumors. Although many types of resection surgery and experimental agents were developed, median survival and clinical prognosis are poorly investigated. Recently, several researches have reported that Eucheuma cottonii has potent as protective effects of coal dust-induced lung damage via inhibition of malondialdehyde (MDA) and oxidative stress in bronchoalveolar lavage fluids (BALF). However, anti-cancer effects and specific molecular mechanism of extract from Eucheuma cottonii (EE) has not been clearly studied yet. This study evaluated that anti-cancer potential of EE in human osteosarcoma Saos-2 cells. EE indicated cytotoxicity on Saos-2 cells in a dose-dependent manner. Morphological degradation and nucleic condensation were also observed under the EE treatment. However, it did not significantly affect on non-cancerous kidney HEK-293 cells under the same concentration which is shown cytotoxicity on Saos-2 cells. The phosphorylation of Fas-Associated Death Domain (FADD) and expression of cleaved caspase-8, -7 and -3 were upregulated in a dose-dependent manner. In immunofluorescence staining, expression level of Fas and cleaved PARP were upregulated by EE treatment. Furthermore, treatment of EE induces upregulation of sub G1 phase by flow cytometry analysis. The results demonstrated that EE has a therapeutic potential against osteosarcoma via FADD mediated caspase cascade apoptosis signal pathway.

A Study on Wintering Microclimate Factors of Evergreen Broad-Leaved Trees, in the Coastal Area of Incheon, Korea (인천해안지역의 난온대성 상록활엽수 겨울철 생장에 영향을 미치는 미기후 요인)

  • Kim, Jung-Chul;Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.5
    • /
    • pp.66-77
    • /
    • 2019
  • This study investigated the feasibility of wintering evergreen broad-leaf trees in the Incheon coastal area through a climate analysis. The coldest monthly mean air temperature ranged from $-2.9^{\circ}C{\sim}-1.6^{\circ}C$. The warmth index of the coastal area of Incheon ranged from $98.89^{\circ}C{\cdot}month-109.03^{\circ}C{\cdot}month$, while the minimum air temperature year ranged from $-13.9^{\circ}C{\sim}-3.6^{\circ}C$. This proved that the Incheon coastal area was not suitable for evergreen broad-leaf trees to grow as the warmth index ranges from $101.0^{\circ}C{\cdot}month{\sim}117.0^{\circ}C{\cdot}month$, and the temperature year-round is $-9.2^{\circ}C$ or higher. This suggests the coastal areas of Incheon is not suitable for the growth of evergreen broad-leaf trees, however some evergreen broad-leaf trees lived in some parts of the area. Wind speed reduction and temperature effect simulations were done using Landschaftsanalyse mit GIS program. As a result of the simulations of wind speed reduction and temperature effects affecting the evergreen broad-leaf trees, it was discovered that a coastal wind velocity of 8.6m/sec was alleviated to be 5m/sec~7m/sec when the wind reached the areas where evergreen broad-leaf trees were present. It was also discovered that species that grew in contact with buildings benefited from a temperature increase of $1.1^{\circ}C{\sim}3.4^{\circ}C$ due to the radiant heat released by the building. Simulation results show that the weather factors affecting the winter growth damages of evergreen broad-leaved trees were wind speed reduction and local warming due to buildings. The wind speed reduction by shielding and local warming effects by buildings have enabled the wintering of evergreen broad-leaved trees. Also, evergreen broad-leaved trees growing in the coastal area of Incheon could be judged to be gradually adapting to low temperatures in winter. This study reached the conclusion that the blockage of wind, and the proximity of buildings, are required for successfully wintering evergreen broad-leaf trees in the coastal area of Incheon.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF

A Study on the Construction Process of the Garden in 'Unbo's House' Focused on the Individual Relationship (인물관계로 본 '운보의 집' 정원의 조영과정)

  • Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.149-159
    • /
    • 2018
  • The study is aimed at establishing basic data to identify the original forms of the garden in Unbo's House. Through interviews and related data comparison analysis the ideas and major events of the person involved in establishing a garden in Unbo's House. Also, derived the direct and indirect effects of these people on gardening. The results are as follows: First, Those directly related to garden in Unbo's House are representative figures of cultural heritage and traditional art in Korea. Based on their expertise and abundant experience in traditional spaces, they contributed greatly to the creation of Unbo's House as a traditional space. Unbo Kim, Gi-Chang who directly influenced Unbo's House gardening, which affected the site selection, location, and the installation of major garden plant plants and traditional landscaping facilities. Hyegok Choi, Soon-Woo recommended Wabon Kim, Dong-Hyun at the request of Kim Ki-Chang and was involved in the overall plan. Housing design, space design and design of major facilities such as pond were confirmed Wabon Kim Dong-Hyun. Second, Kim, Gi-Chang's wife Jeong, Rae-Hyun, who motived to construct a garden. Nosan Lee, Eun-Sang and Korean artist Lee, Seok-Ho were created a signboard and board of the Pillar to encourage simple life in paintings. The themes of the article motived image as creative. In addition, Kim, Hyeong-Sik and Kim, Wan who son of Unbo, has been with Unbo for a long time, watching and influencing garden changes in Unbo's House. Third, The main factors that influenced the garden by character are as follows. Unbo Kim, Ki-Chang had a thorough record-setting spirit and his longing for his mother and wife affected the selection of the site and setting the direction of the garden. His art world with the symbolic emphasis of traditional landscapes, including traditional facilities, and especially plant materials. Choi, Sun-Woo reflected his traditional consciousness and experience in the construction of Unbo's House. Kim, Dong-Hyun applied the basic framework of a traditional building based on Yeonkyongdang hall in Changdeokgung palace. He also reflected on the traditional landscaping design the facilities of ponds acquired through excavation of Donggung Palace and Wolji Pond, Gyeongju. Nosan Lee, Eun-Sang and Lee, Seok-Ho completed their unique place in Unbo's House. Kim, Hyung-Sik was involved in the process of changing, while Kim Wan ran the Unbo's House which he inherited from Kim, Ki-Chang.