• Title/Summary/Keyword: Hall effect thruster

Search Result 14, Processing Time 0.02 seconds

Molecular Dynamics Simulation for the Neutral Particles in Hall Thrusters for Satellite Propulsion (인공위성용 홀 추력기의 중성기체에 대한 분자동력학 시뮬레이션)

  • Song, In-Cheol;Bae, Hyo-Won;Park, Chung-Hoo;Lee, Ho-Jun;Lee, Hae-June
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • Neutral gas in a Hall-effect thruster in a small satellite is simulated using a molecular dynamics code. Investigated are neutral density, pressure, axial average velocity, and temperature for the variation of diffusive reflection ratio, initial gas temperature, and channel length. Expected through this research are improving of discharge simulation through the neutral simulation and understanding of real system.

Numerical Analysis on Plasma Particles inside Electro-magnetic Field Using Particle-in-cell Method (Particle-in-cell 기법을 이용한 전자기장내 플라즈마 입자의 거동 해석)

  • Han, Doo-Hee;Joe, Min-Kyung;Shin, Junsu;Sung, Hong-Gye;Kim, Su-Kyum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.932-938
    • /
    • 2017
  • Particle-in-cell method which blends Eulerian grids and Lagrangian particle is utilized to solve simplified hall-effect thruster. Since this study individually tracks not only neutrons and ions but also electrons, message passing interface(mpi) scheme is adopted for parallel computer cluster. Helical movement of an electron cloud in constant magnetic field is validated comparing with an exact solution. A plasma in radial magnetic field and axial electric field in a reaction cylinder is established. Electrons do double helix movement and are well anchored in a cylinder. Ionization of neutrons by impact with high-speed electrons generates ion particles. They are accelerated by axial electric field, which forms a plume of a plasma-effect thruster.

Brief Review on Measurement Devices for the Plasma Diagnosis of Satellite Electric Propulsion Systems (인공위성 전기추진기관의 상태 진단을 위한 플라즈마 측정 장비 구성에 관한 고찰)

  • Jingeon Kim;Seungmin Guk;Minwoo Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.216-223
    • /
    • 2024
  • Electric propulsion systems, including electrothermal, electrostatic, and electromagnetic thrusters, are promising systems for producing thrust from satellites. These systems generally operate under vacuum plasma conditions and exhibit high specific impulses and thrust-to-weight ratios. Despite their high efficiencies, electric propulsion systems are susceptible to performance variations due to physical factors such as plasma instabilities, which require an accurate diagnosis of their status during operation. In this study, we review various measurement systems adopted to diagnose electric propulsion systems operating under vacuum conditions. Specifically, we review electrical, optical, and other methods that can directly or indirectly measure the status of a thruster, with a particular focus on Hall effect thrusters. The system configurations and fundamental mechanisms of the different measurement systems are described based on case studies of the diagnosis of propulsion systems. We anticipate that this study will contribute to the efficient development and safe operation of electric propulsion systems for use in artificial satellites.