• Title/Summary/Keyword: Halide ions

Search Result 36, Processing Time 0.026 seconds

Controlling Quantum Confinement and Magnetic Doping of Cesium Lead Halide Perovskite Nanocrystals

  • Dong, Yitong;Parobek, David;Son, Dong Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.515-526
    • /
    • 2018
  • Cesium lead halide ($CsPbX_3$) nanocrystals have emerged as a new family of semiconductor nanomaterials that can outperform existing semiconductor nanocrystals owing to their superb optical and charge transport properties. Although these materials are expected to have many superior properties, control of the quantum confinement and isoelectronic magnetic doping, which can greatly enhance their optical, electronic, and magnetic properties, has faced significant challenges. These obstacles have hindered full utilization of the benefits that can be obtained by using $CsPbX_3$ nanocrystals exhibiting strong quantum confinement or coupling between exciton and magnetic dopants, which have been extensively explored in many other semiconductor quantum dots. Here, we review progress made during the past several years in tackling the issues of introducing controllable quantum confinement and doping of $Mn^{2+}$ ions as the prototypical magnetic dopant in colloidal $CsPbX_3$ nanocrystals.

Halogen Exchange Reactions of Cinnamyl Halides

  • Lee, Bon-Su;Lee, Ikchoon
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.87-90
    • /
    • 1969
  • Halogen exchange reactions of trans-cinnnamyl chloride and bromide with radioactive chloride, bromide and iodide ions in acetone have teen studied. Relative nucleophilicity of halide ions and relative leaving ability have been discussed invoking the principle of HSAB.

  • PDF

The Effects of Ambient Ions on the Growth of Gold Nanoparticles by Laser Ablation in Liquid

  • Kwon, Hyejin;Kim, Kuk Ki;Song, Jae Kyu;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.865-870
    • /
    • 2014
  • Gold nanoparticles (AuNPs) were synthesized by laser (Nd:YAG, ${\lambda}$ = 1064 nm) ablation of a gold target immersed in various aqueous electrolyte solutions (7 mM of LiCl, NaCl, KCl, NaBr, and NaI) as well as in deionized water. The surface plasmon absorption and EDX of AuNPs so produced as well as their TEM images were analyzed to investigate the effects of ambient ions on the growth and aggregation of NPs. The size of AuNPs was reduced by laser ablation in the presence of chloride and bromide ions while it increased drastically when AuNPs were formed in iodide solution. Interestingly, triangular nanoplates were synthesized only in iodide solution. Surface chemistry on AuNPs in various electrolyte solutions was explored to elucidate the role of ions on the size and stability of AuNPs.

Study on PVC Mixed Silver Iodide Membrane Electrode (PVC 를 섞은 요오드화은 막전극에 관한 연구)

  • Kwon Young-Soon;Kim Jung-Hee;Park Kee-Chae
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.486-493
    • /
    • 1976
  • The PVC mixed silver iodide pellet was prepared by means of the Infrared Pellet presser and the pellet was used as an indicating membrane electrode, to measure the potentials for various silver ion activities, ranging from $10^{-1}$ to $10^{-6}$ M. The potential responses to silver ion activities were linear and the slope was much close to Nernstian relation as compared with that of the pure silver iodide pellet membrane electrode and the PVC coated silver iodide pellet membrane electrode. The mechanical property and chemical durability of this electrode were found much better than the others. This electrode did not show significant response to the other except silver ion, but had good response to halide ions, i.e., iodide, chloride, bromide and cyanide ions, in the concentration range $10^{-1}$ to $10^{-6}$ M. This electrode could be used as an indicating electrode in potentiometric titrations of single halide ion and also halide mixture with standard solution of silver nitrate.

  • PDF

Nucleophilic Displacement at Sulfur Center (III). Kinetic Studies on Halide Exchange Reactions of Dimethylsulfamoyl Chloride in Dry Acetone (유황의 친핵 치환반응 (제3보). 아세톤 용매속에서의 Dimethylsulfamoyl Chloride의 할라이드 교환반응에 관한 속도론적 연구)

  • Ikchoon Lee;Shi Choon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.406-410
    • /
    • 1973
  • Kinetic study of halide exchange for dimethylsulfamoyl chloride in dry acetone by using radioisotopic halide ions has been carried out at two temperatures. The result of the order of nucleophilicity, as compared with benzenesulfonyl chloride, shows a similar tendency but reaction rate is slower, more than $10^{-2}$times, than benzenesulfonyl chloride. The activation parameter, ${\Delta}H^{\neq}\;and\;{\Delta}S^{\neq}$ decrease in sequence $Cl^-\;>\;Br^-\;>\;I^-$ in dimethylsulfamoyl chloride but it is the reverse order found for benzenesulfonyl chloride. The results are interpreted with bond-breaking, bond-formation, and electronic requirments, and in the light of HSAB Principle.

  • PDF

Quantum Confinement of Exfoliated Organic-Inorganic Hybrid Perovskite Nanocrystals (유무기 페로브스카이트 나노결정의 박리화에 의한 양자구속효과)

  • Choe, Hyeon Jeong;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.496-501
    • /
    • 2021
  • Metal halide perovskite nanocrystals, due to their high absorption coefficient, high diffusion length, and photoluminescence quantum yield, have received significant attention in the fields of optoelectronic applications such as highly efficient photovoltaic cells and narrow-line-width light emitting diodes. Their energy band structure can be controlled via chemical exchange of the halide anion or monovalent cations in the perovskite nanocrystals. Recently, it has been demonstrated that chemical exfoliation of the halide perovskite crystal structure can be achieved by addition of organic ligands such as n-octylamine during the synthetic process. In this study, we systematically investigated the quantum confinement effect of methylammonium lead bromide (CH3NH3PbBr3, MAPbBr3) nanocrystals by precise control of the crystal thickness via chemical exfoliation using n-octylammonium bromide (OABr). We found that the crystalline thickness consistently decreases with increasing amounts of OABr, which has a larger ionic radius than that of CH3NH3+ ions. In particular, a significant quantum confinement effect is observed when the amounts of OABr are higher than 60 %, which exhibited a blue-shifted PL emission (~ 100 nm) as well as an increase of energy bandgap (~ 1.53 eV).

Ion Migration in Organic Metal Halide Perovskites (유기 금속 할라이드 페로브스카이트에서 이온 이동)

  • Oh, Ilwhan
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • In this review, recent researches on ion transport phenomena in organic metal halide perovskite materials, which have been popular all over the world, are summarized. Although different results have been reported depending on the perovskite material composition and applied voltage, iodide seems to migrate under actual solar cell operating conditions, and occasionally methylammonium migration is observed. Perovskite is a so-called mixed conductor in which electrons and ions move simultaneously at room temperature, which greatly influences the hysteresis of the perovskite solar cell current-voltage curve and the performance degradation due to long-term operation.

Looking through the Mass-to-Charge Ratio: Past, Present and Future Perspectives

  • Shin, Seung Koo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.126-130
    • /
    • 2021
  • The mass spectrometry (MS) provides the mass-to-charge ratios of atoms, molecules, stable/metastable complexes, and their fragments. I have taken a long journey with MS to address outstanding issues and problems by experiments and theory and gain insights into underlying principles in chemistry. By looking through the mass-to-charge ratio, I have studied thermochemical problems in silicon chemistry, the infrared multiphoton dissociation spectroscopy of organometallic intermediates, unimolecular dissociations of halotoluene radical cations, and the kinetics of association/dissociation of alkali halide triple ions with Lewis bases. Various MS platforms have been used to characterize non-covalent interactions between porphyrins and fullerenes and those between the group IIB ions and trioctylchalcogenides, and to examine the binding of the group IA, IIA and porphyrin ions to G-quadruplex DNA. Recently, I have focused on mass-balanced H/D isotope dipeptide tags for MS-based quantitative proteomics, a simple chemical modification method for MS-based lipase assay, and the kinetics and dynamics of energy-variable collision-induced dissociation of chemically modified peptides. Now, I see an important role of MS in global issues in the post-COVID era, as the society demands high standards for indoor air quality to contain the airborne-pathogen transmission as well as in-situ monitoring and tracking of carbon emissions to reduce global warming.

Evaluation of the inhibitive characteristics of 1,4-dihydropyridine derivatives for the corrosion of mild steel in 1M $H_2SO_4$

  • Sounthari, P.;Kiruthika, A.;Sai santhoshi, J.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.65-78
    • /
    • 2013
  • The present investigation deals with the corrosion inhibition of mild steel in 1M $H_2SO_4$ with 1, 4-dihydro pyridine and its derivatives prepared using microwave activation method. The synthesis of inhibitor was confirmed by IR spectra. The effect of 1, 4-dihydropyridine derivatives on the corrosion inhibition of mild steel in 1M $H_2SO_4$ was studied using weight loss and electrochemical polarization techniques. Influence of temperature (303-333K) and synergistic effect of halide ions ($I^-$, $Br^-$ and $Cl^-$) on the inhibition behaviour was also studied. Corrosion products on the metal surface were analyzed by scanning electron microscopy (SEM) and a possible mechanism of inhibition by the compounds is suggested. Thermodynamic parameters were calculated using weight loss data in order to elaborate the mechanism of corrosion inhibition. Polarization measurements revealed that the studied compounds acted as mixed type inhibitor but slightly anodic in nature. Electrochemical impedance measurements revealed that the compounds were adsorbed onto the carbon steel surface and the adsorption obeyed the Langmuir adsorption isotherm. The synergistic effect of halide ions on the IE increases with increase in concentration. The IE obtained from atomic absorption spectrophotometric studies was found to be in good agreement with that obtained from the conventional weight loss method. SEM revealed the information of a smooth, dense protective layer in presence of the inhibitors.

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF