• Title/Summary/Keyword: Half-width of Velocity

Search Result 54, Processing Time 0.031 seconds

LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW AT $Re_{\tau}=180$ USING VARIATIONAL MULTISCALE METHOD (변분다중스케일법을 이용한 $Re_{\tau}=180$ 채널 난류 유동의 대와류모사)

  • Chang, K.;Lee, B.H.;Yoon, B.S.;Lee, J.S.;Roh, M.I.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • In the present work, LES with new variational multiscale method is conducted on the fully developed channel flow with Reynolds number, 180 based on the friction velocity and the channel half width. Incompressible Navier-Stokes equations are integrated using finite element method with the basis function of NURBS. To solve space-time equations, Newton's method with two stage predictor multicorrector algorithm is employed. The code is parallelized using MPI. The computational domain is a rectangular box of size $2{\pi}{\times}2{\times}4/3{\pi}$ in the streamwise, wall normal and spanwise direction. Mean velocity profiles and velocity fluctuations are compared with the data of DNS. The results agree well with those of DNS and other traditional LES.

Shear wave in a fiber-reinforced anisotropic layer overlying a pre-stressed porous half space with self-weight

  • Kakar, Rajneesh;Kakar, Shikha
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.911-930
    • /
    • 2016
  • The main purpose of this paper is to study the effects of initial stress, gravity, anisotropy and porosity on the propagation of shear wave (SH-waves) in a fiber-reinforced layer placed over a porous media. The frequency equations in a closed form have been derived for SH-waves by applying suitable boundary conditions. The frequency equations have been expanded and approximated up to $2^{nd}$ order of Whittaker's function. It has been observed that the SH-wave velocity decreases as width of fiber-reinforced layer increases. However, with the increase of initial stress, gravity parameter and porosity, the phase velocity increases. The results obtained are in perfect agreement with the standard results investigated by other relevant researchers.

LARGE EDDY SIMULATION OF FULLY TURBULENT CHANNEL FLOW USING VARIATIONAL MULTISCALE METHOD (변분다중스케일법을 이용한 $Re_{\tau}=180$ 채널 난류 유동의 대와류모사)

  • Chang, K.;Lee, B.H.;Yoon, B.S.;Lee, J.S.;Roh, M.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-59
    • /
    • 2009
  • In the present work, LES with new variational multiscale method is conducted on the fully developed channel flow with Reynolds number is 180 based on the friction velocity and the channel half width. Incompressible Navier-Stokes equations are integrated using finite element method with the basis function of NURBS. To solve space-time equations, Newton's method with two stage predictor multicorretor algorithm is employed. The code is parallelized using MPI. The computational domain is a rectangular box of size $2{\pi}{\times}2{\times}4/3{\pi}$ in the streamwise, wall normal and spanwise direction. Mean velocity profiles and velocity fluctuations are compared with the data of DNS. The results agree well with those of DNS and other traditional LES.

  • PDF

Flow Characteristics of Two-Dimensional Turbulent Stepped Wall Jet (2次元 亂流 Stepped Wall Jet 의 流動特性)

  • 부정숙;김경천;박진호;강창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.732-742
    • /
    • 1985
  • Measurements of mean velocity and turbulence characteristics are obtained with a linearized constant temperature hot-wire anemometer in a two-dimensional turbulent jet discharging parallel to a flate. Wall static pressure distribution is also measure. The Reynolds number based on the jet nozzle width (D) is about 42,000 and the step height is 2.5D. The reattachment length is found to be 7.5D by using both wool tuft and oil methods. Upstream of the reattachment point, there exist double coherent structures and mean velocity, Reynolds stresses and triple product profiles are asymmetric about jet center line due to the influence of streamline curvature and recirculating flow region. Near the reattachment point, wall static pressure and turbulence quantities change its shape rapidly because of the large eddies by the solid wall. Especially, turbulence intensity has a maximum value in the reattachment regin, then decreases slowly in the redeveloping wall jet ragion. Downstream of X/D=14, a single large scale eddy structure is formed. Far downstream affer the reattachment(X/D.geq.18) mean velocity profile, the decay of maximum velocity and the variation of jet half width are nearly similar to those of plane wall jet, but the Reynolds stresses are higher than those of the latter.

A Fine-scale Half Ring-like Structure around a Pore

  • Song, Donguk;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.87.2-87.2
    • /
    • 2013
  • We studied a fine-scale half ring-like structure around a pore seen from the high spectral and the high spatial resolution data. Our observations were carried out using the Fast Imaging Solar Spectrograph (FISS) and the InfraRed Imaging Magnetograph (IRIM) installed at the 1.6 meter New Solar Telescope of Big Bear Solar Observatory (BBSO) on 2012 July 19. During the observations, we found a fine-scale half ring-like structure located very close to a pore (~0.4 arcsec apart from the pore). It was seen in the far wing images of the $H{\alpha}$ and Ca II $8542{\AA}$ lines, but it was not seen in the line center images of two lines. The length of the structure is about 4200 km and the width is about 350 km. We determined its line-of-sight velocity using the Doppler shift of the centroid of the Ti II line ($6559.6{\AA}$, close to the $H{\alpha}$ line) and determined horizontal velocity using the NAVE method. we also investigated the magnetic configurations using the Stokes I, Q, U, and V maps of the IRIM. As a results, we found that it has a high blue-shift velocity (~2km) faster than the photospheric features and has a strong horizontal component of the magnetic field. Based on our findings, we suggest that it is associated with small flux emergence, which occurs very close to the pore. Even though it is very small structure, this kind of magnetic configuration can be in chare of the upper chromosphere heating, especially above the pore.

  • PDF

A Study on Saturated Boiling Heat Transfer in Upward Rectangular Impinging Water Jet System (연직상향(鉛直上向) 사각충돌수분류(四角衝突水噴流)의 포화비등 열전달에 관한 연구)

  • Lee, J.S.;Ohm, K.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.395-403
    • /
    • 1991
  • The purpose of this investigation was to characterize nucleate boiling and burn-out heat flux for rectangular free jet with saturated water impinging perpendicularly and upward against a flat uniform heat flux surface. Heat flux measured for Reynolds number based on rectangular nozzle width and for aspect ratio. The result of nucleate boiling heat transfer was presented nondimensional experimental equation including Nusselt, Boiling, Subcooling, Reynolds and Weber number. The effect of aspect ratio of heated surface in the burn-out heat flux had not appeared distinctly. But for the same aspect ratio, burn-out heat flux increased linearly with increment of nozzle exit velocity.

  • PDF

Flow Analysis on Near Field of Elliptic Jet Using a Single-Frame PIV (고해상도 PIV 기법을 이용한 타원형 제트의 근접 유동장 해석)

  • Shin, Dae-Sig;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.459-466
    • /
    • 2000
  • Flow characteristics of turbulent elliptic jets were experimentally investigated using a single-frame PIV system. A sharp-edged elliptic nozzle with aspect ratio(AR) of 2 was tested and the experimental results were compared with those of circular jet having the same equivalent diameter($D_e$). The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter was about $1{\times}10^4$. The spreading rate along the major and minor axis are different remarkably. The jet half width along the major axis decreases at first and then increases with going downstream. But along the minor axis the jet width increases steadily. The elliptic jet of AR=2 has one switching points at $X/D_e=2$ within the near field. Turbulence properties are also found to be significantly different along the major and minor axis planes.

Wind flow over sinusoidal hilly obstacles located in a uniform flow

  • Lee, Sang-Joon;Lim, Hee-Chang;Park, Ki-Chul
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.515-526
    • /
    • 2002
  • The wind flow over two-dimensional sinusoidal hilly obstacles with slope (the ratio of height to half width) of 0.5 has been investigated experimentally and numerically. Experiments for single and double sinusoidal hill models were carried out in a subsonic wind tunnel. The mean velocity profiles, turbulence statistics, and surface pressure distributions were measured at the Reynolds number based on the obstacle height(h=40 mm) of $2.6{\times}10^4$. The reattachment points behind the obstacles were determined using the oil-ink dot and tuft methods. The smoke-wire method was employed to visualize the flow structure qualitatively. The finite-volume-method and the SIMPLE-C algorithm with an orthogonal body-fitted grid were used for numerical simulation. Comparison of mean velocity profiles between the experiments and the numerical simulation shows a good agreement except for the separation region, however, the surface pressure data show almost similar distributions.

Turbulent Mixing Flow Characteristics of Solid-Cone Type Diesel Spray

  • Lee, Jeekuen;Shinjae Kang;Park, Byoungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1135-1143
    • /
    • 2002
  • The intermittent spray characteristics of the single-hole diesel nozzle (d$\sub$n/=0.32 mm) used in the fuel injection system of heavy-duty diesel engines were experimentally investigated. The mean velocity and turbulent characteristics of the diesel spray injected intermittently into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer) . The gradient of spray half-width linearly increased with time from the start of injection, and it approximated to 0.04 at the end of the injection. The axial mean velocity of the fuel spray measured along the radial direction was similar to that of the free air jet within R/b= 1.0-1.5 regardless of elapsing time, and its non-dimensional distribution corresponds to the theoretical velocity distributions suggested by Hinze in the downstream of the spray flow fields. The turbulent intensity of the axial velocity components measured along the radial direction represented the 20-30% of the U$\sub$cι/ and tended to decrease in the outer region. The turbulent intensity in the trailing edge was higher than that in the leading edge.

The Flow Characteristics of Parallel Plane Jets Using Particle Image Velocimetry Technique (I) - Unventilated Jet - (PIV기법을 이용한 병렬 평면제트의 유동특성 (I) - 유입이 제한된 제트 -)

  • Kim, Dong-Keon;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2003
  • Experiments were conducted to show the characteristics of the flow on unventilated parallel plane jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry to investigate the flow field generated by the air issued from two identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5300 based on the nozzle width and the cases of nozzle-to-nozzle distance were four times. six times and eight times the width of the nozzle. Results show that a recirculation zone with a sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. The positions. where maximum value of mean turbulent intensities and mean turbulent kinetic energy show, were at the same position with the merging point. The spread of jets in the merging region increases more rapidly than that of Jets in the converging and the combined region. As nozzle-to-nozzle distances were increased. it was shown that merging and combined lengths were shorter.