• Title/Summary/Keyword: Half-cell Potential

Search Result 161, Processing Time 0.033 seconds

Analysis on IBEM for consideration on reinforced concrete slab resistance

  • Kyung, Je-Woon;Tae, Sung-Ho;Lee, Han-Seung;Lee, Sung-Bok
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.545-558
    • /
    • 2008
  • The corrosion of RC structures demonstrates very complicated forms of deterioration intermingled together but all pointing to a decrease in the durability of RC structures due to the corrosion of reinforcing bars. Until now, nondestructive techniques, such as half-cell potential and polarization resistance, have been widely available in the world. The former provides information on the probability of corrosion while the latter is associated with information concerning corrosion rates. Inversion by the boundary element method (IBEM) was developed for considering concrete resistivity. The applicability of the procedure was examined through a numerical analysis and electrolytic tests for RC slabs. A distribution in such concrete resistivity is relatively inhomogeneous including cracks on the surface of slabs. Regarding cracks in concrete, the relative coefficient of concrete resistance was introduced to perform its analysis. Further, the procedure will be developed to identify the corroded region visually using 3-D VRML.

Virtual Reality Presentation for Nondestructive Evaluation of Rebar Corrosion in Concrete based on Inverse BEM

  • Kyung, Je-Woon;Yokota, Masaru;Leelalerkiet, V.;Ohtsu, Masayasu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • In order to evaluate the corrosion of reinforcing steel-bars (rebar) in concrete, a nondestructive evaluation by the half-cell potential method is currently applied. In this study, potentials measured on a concrete surface are compensated into those on the concrete-rebar interface by the inverse boundary element method (IBEM). Because these potentials are obtained three-dimensionally (3-D), 3-D visualization is desirable. To this end, a visualization system has been developed by using VRML (Virtual Reality Modeling Language). As an application, results of a reinforced concrete (RC) slab with corroded rebars are visualized and discussed.

A Exprimental Study on the Corrosion of Reinforcing Steel in a Coastal Concrete Structure due to the Attack of Chloride Ions (염분침투에 의한 해안 콘크리트 구조물의 철근부식에 관한 실험적 연구)

  • 안상섭;김은겸;신치범;조원일;이윤한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.263-268
    • /
    • 1997
  • One of the principal causes of the deterioation of coastal concrete structures is the corrosion of reinforcing steel induced by the attack of chloride ions. An experimental study was performed to investigate the distribution of concentration of chloride ions in a coastal concrete structure and to measure the half-cell potential of embedded steel by using the copper-copper sulfate reference electrode. Quantitative analysis showed that the concentration of chloride ion in the aqueous phase near the surface of embedded steel exceeded a threshold value for corrosion, 0.05% by weight in concrete. The absolute value of half-cell potential at some members of embedded steel was measured to be higher than 350mV, indicating that the probability of corrosion is more than 90%. The prediction on corrosion based on the experimental measurements was confirmed by the observation of corrosion on the surface of steel bars in the concrete core taken out of the concrete structure.

  • PDF

Corrosion of rebar in carbon fiber reinforced polymer bonded reinforced concrete

  • Bahekar, Prasad V.;Gadve, Sangeeta S.
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.247-255
    • /
    • 2019
  • Several reinforced concrete structures that get deteriorated by rebar corrosion are retrofitted using Carbon Fiber Reinforced Polymer (CFRP). When rebar comes in direct contact with CFRP, rebar may corrode, as iron is more active than carbon. Progression of corrosion of rebar in strengthened RC structures has been carried out when rebar comes in direct contact with CFRP. The experimentation is carried out in two phases. In phase I, corrosion of bare steel bar is monitored by making its contact with CFRP. In phase II, concrete specimens with surface bonded CFRP were casted and subjected to the realistic exposure conditions keeping direct contact between rebar and CFRP. Progression of corrosion has been monitored by various parameters: Half-cell potential, Tafel extrapolation and Linear Polarisation Resistance. On termination of exposure, to find residual bond stress between rebar and concrete, pull-out test was performed. Rebar in contact with CFRP has shown substantially higher corrosion. The level of corrosion will be more with more area of contact.

Corrosion Characteristics of Steel Reinforcements Induced by Internal Chlorides in Concrete and Determination of Chloride Thresholds (콘크리트 내부염소이온에 의한 철근의 부식특성 및 임계 염소이온농도의 결정 연구)

  • 오병환;장승엽;신용석
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.193-203
    • /
    • 1999
  • The corrosion of steel reinforcements in concrete is of great concern in recent years. This study is focused on the corrosion behavior of steel bars induced by internal chlorides in concrete at early ages. The main objective of this study is to determine the chloride thresholds causing depassivation and active corrosion of steel reinforcement in concrete. To examine the threshold concentration of chloride ion, the half-cell potential, chemical composition of expressed pore solutions of concrete and the rate of corosion area of the specimens were measured. Major variables include the added amount of chlorides in concrete, types of binders, and water-to-binder ration. From the present comprehensive experimental results, the factors influencing chloride-induced corrosion are investigated, and the chloride thresholds causing active corrosion of steel bars are proposed. The present study will enable to specify the realistic chloride limit in concrete which can be used in the future technical specification.

Study of Membrane Potential Analysis According to Applying Doksam-tang to a Human Heart Failure Model (인체심장의 심부전모델에서의 獨蔘湯 투여에 따른 심장막전위 분석에 관한 연구)

  • Jeong, Dae-Yeong;Lee, Boo-Kyun;Hong, Jin-Woo;An, Won-Gun
    • Herbal Formula Science
    • /
    • v.23 no.1
    • /
    • pp.121-131
    • /
    • 2015
  • Objectives : This study was conducted to investigate the membrane potential to apply Doksam-tang to a human heart failure model. Methods : The human heart model was built by Luo et al. CellML model, Priebe et al. CellML model, and a human heart mesh file. Doksam-tang gives channel the half maximal inhibitory concentration(IC 50 ), half maximal effective concentration(EC 50 ) values and compounds concentrations. These data load into the laptop with Ubuntu OS, and build the library with the data. Results : While results of the study with the heart failure model shows abnormal membrane potential from the normal heart model, the study with applying Doksam-tang to heart failure model shows restoring membrane potential that is similar to normal heart model. Conclusions : These results of the testings suggest that a conception of novel technique to investigate the effects of Korean herbal medicine.

Evaluation on Steel Bar Corrosion Embedded in Antiwashout Underwater Concrete

  • Moon Han-Young;Shin Kook-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.303-309
    • /
    • 2005
  • This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed on three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures. The three series of antiwashout underwater concrete were: concrete constituted exclusively with ordinary portland cement (OPC), concrete composed of ordinary portland cement mixed with fly-ash in $20\%$ ratio (FA20), and concrete with ground granulated blast furnace slag mixed in $50\%$ ratio (BFS50). The environment of manufacture was in artificial seawater. Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below -350mv after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as $30{\mu}A/mm^2$ and $0.258\%$. On the other hand, for the other specimens that are FA20 and BFS50, potential values below -350mV were observed later at 18 and 20 cycles, respectively. Results confirmed the hypothesis that mineral admixtures may be more effective on delay the development of steel bar corrosion in antiwashout underwater concrete.

Variation of Half Cell Potential Measurement in Concrete with Different Properties and Anti-Corrosive Condition (콘크리트 특성에 따른 반전위 측정값의 변화와 부식제어 조건)

  • Kim, Ki-Bum;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.95-103
    • /
    • 2013
  • Half Cell Potential (HPC) technique has been widely adopted for its quantitative evaluation of corrosion possibility. In this study, RC specimens with three different cover depths (10mm, 30mm, and 60mm) and w/c ratios (0.35, 0.55, and 0.70) are prepared and accelerated salt spray test (SST) is performed for 45 days. Steel corrosion occurs in the specimens with 0.55 of w/c and 10mm of cover depth. In the case of 0.70 of w/c and 30mm of cover depth, steel corrosion is also monitored. Considering the effect of cover depth and w/c ratio, HCP evaluation equation is proposed and the condition which can control steel corrosion is obtained. Furthermore, anti-corrosive conditions containing w/c ratio and cover depth are analyzed through Life 365 program and the conditions are compared with the results from this study.

Evaluation of Half Cell Potential Measurement in Cracked Concrete Exposed to Salt Spraying Test (염해에 노출된 균열부 콘크리트의 반전위 평가)

  • Kim, Ki-Bum;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.621-630
    • /
    • 2013
  • Several techniques for steel corrosion detection are proposed and HCP (half cell potential) technique is widely adopted for field investigation. If concrete has cracks on surface, steel corrosion is rapidly accelerated due to additional intrusion of chloride and carbon dioxide ions. This study is for an evaluation of HCP in cracked concrete exposed chloride attack. For this work, RC (reinforced concrete) beams are prepared considering 3 w/c ratios (0.35, 0.55, and 0.70) and several cover depths (10~60 mm) and various crack widths of 0.0~1.0 mm are induced. For 35 days, SST (salt spraying test) is performed for corrosion acceleration, and HCP and corrosion length of rebar are evaluated. With increasing crack width, w/c ratios, and decreasing cover depth, HCP measurements increase. HCP evaluation technique is proposed considering the effects of w/c ratios, crack width, and cover depth. Furthermore anti-corrosive cover depths are obtained through Life365 program and the results are compared with those from this study. The results shows relatively big difference in cracked concrete, however provide similar anti-corrosive conditions in sound concrete.

The behavior of corrosion potential in the mortar-embedded (부식된 철근을 사용한 모르타르의 환경에 따른 부식전위의 거동)

  • 이상호;한정섭;권순석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.103-108
    • /
    • 1996
  • To syudy the change of prtential in the mortar-embedded precorroded rebar, a half cell method was adapted. The rebar was corroded by the salt spray and then the rebar embedded in the mortar. A saturated copper sulfate feference electrode was used. The corrosion potential of the rebar in the mortar specimen cured in air was increased, whereas that of the rebar cured in water was decreased with aging. The corrosion potential of the rebar in the mortar was decreased with corroded time by the salt spray. As the mortar thickness covered the rebar was increased, the corrosion potential of the rebar in the mortar was increased.

  • PDF